Here we report the complete sequence of the mitochondrial (mt) genome of the necrotrophic phytopathogenic fungus Sclerotinia borealis, a member of the order Helotiales of Ascomycetes. The 203,051 bp long mtDNA of S. borealis represents one of the largest sequenced fungal mt genomes. The large size is mostly determined by the presence of mobile genetic elements, which include 61 introns. Introns contain a total of 125,394 bp, are scattered throughout the genome, and are found in 12 protein-coding genes and in the ribosomal RNA genes. Most introns contain complete or truncated ORFs that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Integrations of mobile elements are also evidenced by the presence of two regions similar to fragments of inverton-like plasmids. Although duplications of some short genome regions, resulting in the appearance of truncated extra copies of genes, did occur, we found no evidences of extensive accumulation of repeat sequences accounting for mitochondrial genome size expansion in some other fungi. Comparisons of mtDNA of S. borealis with other members of the order Helotiales reveal considerable gene order conservation and a dynamic pattern of intron acquisition and loss during evolution. Our data are consistent with the hypothesis that horizontal DNA transfer has played a significant role in the evolution and size expansion of the S. borealis mt genome.
We review the potential for related soya species to cross-pollinate in field and greenhouse conditions. Several local soybean cultivars were fertilized successfully by pollen from wild soya. However, when the GM soybean cv. Stine 2254 RR (GTS 40-3-2) was used as a pollen 'donor' and plants of Glycine soja were the pollen 'trap', no herbicide-resistant plants were obtained during two growing seasons. Thus, natural cross-pollination between plants of the soybean species would probably be extremely rare, with a frequency below the sensitivity of this experiment. More data are needed to evaluate fully the extent of transfer of herbicide tolerance genes from widespread cultivation of soybeans to wild soya that might occur in this region.
We report here the annotated genome sequence of Xanthomonas arboricola strain 3004, isolated from barley leaves with symptoms of streak and capable of infecting other plant species. We sequenced the genome of X. arboricola strain 3004 to improve the understanding of molecular mechanisms of the pathogenesis and evolution of the genus Xanthomonas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.