Статья посвящена возможностям и ограничениям метода модерированного конфирматорного факторного анализа (MCFA) при исследованиях структуры интеллекта в контексте анализа закона убывающей отдачи Ч. Спирмена (Spearman’s Law of Diminishing Returns, SLODR). В рамках работы с помощью MCFA проверяется простая однофакторная модель на больших выборках симулированных данных и реальных результатах тестирования интеллекта. Симулированные данные представляют большие наборы (около 10 000 «респондентов» каждый) и моделируют несколько специфических ситуаций: эффект SLODR, гетероскедастичность остатков модели (увеличение ошибки с ростом общего фактора интеллекта), асимметрию распределения общего фактора интеллекта и большую плотность легких заданий в психометрической методике. Реальные данные, используемые в работе, — результаты тестирования 11 388 респондентов. Модель была оценена на каждом из наборов данных, в качестве модератора использовались факторные значения, полученные с помощью метода главных компонент, модерировались факторные нагрузки и ошибки модели как по отдельности, так и совместно. Результаты показали, что (1) одновременное модерирование факторных нагрузок и ошибок в модели может давать в некоторых случаях неадекватные результаты; (2) эффект SLODR может выражаться разными комбинациями асимметрии распределения факторных значений и возрастания дисперсий ошибок вдоль главного фактора; (3) в рамках классической психометрики различение реального эффекта SLODR и ложного, порожденного отбором респондентов, вероятно, невозможно; (4) два известных источника асимметрии распределений в тестировании интеллекта — неравная плотность заданий разной трудности и отбор респондентов — «в чистом виде» легко различаются, однако в реальных данных это сделать нелегко; (5) метод MCFA недостаточно прозрачен для прямых интерпретаций, показано, что модерация дисперсии ошибки может быть заменена анализом регрессионных остатков, а интерпретация модераций факторных нагрузок выигрывает, если сопровождается анализом асимметрий распределений переменных и факторных значений.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.