Summary
This study presents results of the study of infectivity of avian influenza virus (AIV) A subtype H5N1 strains isolated from agricultural birds across the territory of the Russian Federation and CIS countries. The results of the susceptibility of chickens to the AIV isolates delivered by the aerosol route and the dissemination of the virus in the organs of infected birds are presented. As was observed, the sensitivity of birds to AIV by the aerosol route of infection is 30 times higher than by intranasal route, 500 times higher than by the oral route and 10 000 times higher than by the intragastric route of infection, which is indicative of higher permissivity of respiratory organs to AIV. The highest titres of AIV A subtype H5N1(A/Chicken/Kurgan/05/2005 strain) in aerosol‐infected chickens were found in nasal cavity mucosa, lungs, cloaca, serum and kidney, where viable virus accumulation was detected by 18 h post‐infection (p.i.). The highest virus titres were observed 54 h p.i. in lungs, serum and kidney, reaching the value of 8.16 lg EID50/g(ml) in the lungs. The results showed that birds infected by the aerosol route developed higher titres of virus than those infected by other routes.
Marburg virus (MV) reproduction in organs, hematological and pathological changes were studied by virological and clinical methods, light and electron microscopy in guinea pigs respiratory challenged by the virus. Liver and spleen were most affected by MV, as in parenteral infection. The sequential involvement of cells in virus replication was also the same as in parenteral infection, with monocytoid-macrophagal cells infected first, followed by hepatocytes, spongiocytes, endotheliocytes and fibroblasts. Hemopoietic cells showed evidence of severe damage in respiratory infected guinea pigs. A distinguishing feature of the respiratory infection was close contact of leucocytes with MV infected cells. It is suggested that the entrapment and accumulation of MV in the lungs of respiratory infected guinea pigs makes possible the enfoldment leucocyte attack which does not, however, result in destruction of the infected cells.
In experiments to study the sensitivity of ground squirrels (Marmota bobak) to monkeypox virus (MPXV) at intranasal challenge, expressed pox-like clinical symptoms (hyperthermia, lymphadenitis, skin rash all over the body and mucous membranes and others) were observed 7-9 days post-infection. The 50% infective dose (ID ) of MPXV for these marmots determined by the presence of clinical signs of the disease was 2.2 log PFU. Some diseased marmots (about 40%) died 13-22 days post-infection, and the mortality rate was weakly dependent on MPXV infective dose. Lungs with trachea were primary target organs of marmots challenged intranasally (with ~30 ID ). The pathogen got to secondary target organs of the animals mainly via the lymphatic way (with replication in bifurcation lymph nodes). Lungs with trachea, nasal mucosa and skin were the organs where the maximum MPXV amounts accumulated in these animals. Evidences of the pathogen presence and replication were revealed in these and subcutaneously infected marmots in the traditional primary target cells for MPXV (macrophages and respiratory tract epitheliocytes), as well as in some other cells (endotheliocytes, plasmocytes, fibroblasts, reticular and smooth muscle cells). Our use of this animal species to assess the antiviral efficacy of some drugs demonstrated the agreement of the obtained results with those described in scientific literature, which opens up the prospects of using marmots as animal models for monkeypox to develop therapeutic and preventive anti-smallpox drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.