The Atmospheric Chemistry Suite (ACS) package is an element of the Russian contribution to the ESA-Roscosmos ExoMars 2016 Trace Gas Orbiter (TGO) mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. This ensemble of spectrometers has been designed and developed in response to the Trace Gas Orbiter mission objectives that specifically address the requirement of high sensitivity instruments to enable the unambiguous detection of trace gases of potential geophysical or biological interest. For this reason, ACS embarks a set of instruments achieving simultaneously very high accuracy (ppt level), very high resolving power (>10,000) and large spectral coverage (0.7 to 17 µm-the visible to thermal infrared range). The near-infrared (NIR) channel is a versatile spectrometer covering the 0.7-1.6 µm spectral range with a resolving power of ∼20,000. NIR employs the combination of an echelle grating with an AOTF (Acousto-Optical Tunable Filter) as diffraction order selector. This channel will be mainly operated in solar occultation and nadir, and can also perform limb observations. The scientific goals of NIR are the measurements of water vapor, aerosols, and dayside or night side airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the 2.2-4.4 µm range. MIR achieves a resolving power of >50,000. It has been designed to accomplish the most sensitive measurements ever of the trace gases present in the Martian atmosphere. The thermal-infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer encompassing the spectral range of 1.7-17 µm with apodized resolution varying from 0.2 to 1.3 cm −1 . TIRVIM is primarily dedicated to profiling temperature from the surface up to ∼60 km and to monitor aerosol abundance in nadir. TIRVIM also has a limb and solar occultation capability. The technical concept of the instrument, its accommodation on the spacecraft, the optical designs as well as some of the calibrations, and the expected performances for its three channels are described.
A fringe-pattern analysing interferometer with a resolution of 1 10 -9 , stability of readings of about 0.1 nm, and an uncertainty owing to optical effects of less than 1 nm, has been used to study some systematic effects in gauge block length measurements. Measurements on steel and quartz plates with sub-nanometre reproducibility are reported. An accuracy of about 1 nm is demonstrated for a combination of reproducible wringing and slave-block techniques. The limitations of the present definition of the length of a gauge block are highlighted. A double-sided method for length measurement of gauge blocks has been realized, the results of which are not affected by excessive thickness of the wringing film and which incorporate a correction on the interferometer optics.
We consider the problem of minimization of a convex function on a simple set with convex non-smooth inequality constraint and describe first-order methods to solve such problems in different situations: smooth or non-smooth objective function; convex or strongly convex objective and constraint; deterministic or randomized information about the objective and constraint. Described methods are based on Mirror Descent algorithm and switching subgradient scheme. One of our focus is to propose, for the listed different settings, a Mirror Descent with adaptive stepsizes and adaptive stopping rule. We also construct Mirror Descent for problems with objective function, which is not Lipschitz, e.g. is a quadratic function. Besides that, we address the question of recovering the dual solution in the considered problem.
A primary-level comparator, with a reproducibility of 0.2 nm and intended for realization of a Systeme International length unit in the range of 1-100 mm, is reported. High-precision differential measurements of phase change on reflection from blocks and end plates are demonstrated. A set of experiments has been developed to measure systematic error associated with nonideal interferometer optics and deviations from flatness of an auxiliary plate. For specially selected high-grade 6-mm blocks, reproducible wringing has been achieved with a random uncertainty in length measurements of 0.1-0.2 nm. Subnanometer wear-off of the blocks as a result of the cleaning has been detected. Under the conditions of reproducible wringing, the accuracy of the length measurements is evaluated to be in the 2-3-nm range for 6-mm blocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.