The changes in the brain signaling systems play an important role in etiology and pathogenesis of Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), being a possible cause of these diseases. Therefore, their restoration at the early stages of T2DM and MS can be regarded as a promising way to treat and prevent these diseases and their complications. The data on the functional state of the brain signaling systems regulated by insulin, IGF-1, leptin, dopamine, serotonin, melanocortins and glucagon-like peptide-1, in T2DM and MS, are analyzed. The pharmacological approaches to restoration of these systems and improvement of insulin sensitivity, energy expenditure, lipid metabolism, and to prevent diabetic complications are discussed.
The pro-opiomelanocortin (POMC)-expressing neurons of the hypothalamic arcuate nucleus (ARC) are involved in the control of food intake and metabolic processes. It is assumed that, in addition to leptin, the activity of these neurons is regulated by serotonin and dopamine, but only subtype 2C serotonin receptors (5-HTR) was identified earlier on the POMC-neurons. The aim of this work was a comparative study of the localization and number of leptin receptors (LepR), types 1 and 2 dopamine receptors (DR, DR), 5-HTR and 5-HTR on the POMC-neurons and the expression of the genes encoding them in the ARC of the normal and diet-induced obese (DIO) rodents and the agouti mice (A /a) with the melanocortin obesity. As shown by immunohistochemistry (IHC), all the studied receptors were located on the POMC-immunopositive neurons, and their IHC-content was in agreement with the expression of their genes. In DIO rats the number of DR and DR in the POMC-neurons and their expression in the ARC were reduced. In DIO mice the number of DR and DR did not change, while the number of LepR and 5-HTR was increased, although to a small extent. In the POMC-neurons of agouti mice the number of LepR, DR, 5-HTR and 5-HTR was increased, and the DR number was reduced. Thus, our data demonstrates for the first time the localization of different types of the serotonin and dopamine receptors on the POMC-neurons and a specific pattern of the changes of their number and expression in the DIO and melanocortin obesity.
The peptide hormone relaxin produces dose-dependent stimulation of adenylyl cyclase activity in rat tissues (striatum, cardiac and skeletal muscle) and the muscle tissues of invertebrates, i.e., the bivalve mollusk Anodonta cygnea and the earthworm Lumbricus terrestris, adenylyl cyclase stimulation being more marked in the rat striatum and cardiac muscle. Our studies of the type of relaxin receptor involved in mediating these actions of relaxin involved the first synthesis of peptides 619-629, 619-629-Lys(Palm), and 615-629, which are derivatives of the primary structure of the C-terminal part of the third cytoplasmic loop of the type 1 relaxin receptor (LGR7). Peptides 619-629-Lys(Palm) and 615-629 showed competitive inhibition of adenylyl cyclase stimulation by relaxin in rat striatum and cardiac muscle but had no effect on the action of relaxin in rat skeletal muscle or invertebrate muscle, which is evidence for the tissue and species specificity of their actions. On the one hand, this indicates involvement of the LGR7 receptor in mediating the adenylyl cyclase-stimulating action of relaxin in rat striatum and cardiac muscle and, on the other, demonstrates the existence of other adenylyl cyclase signal mechanisms for the actions of relaxin in rat skeletal muscle and invertebrate muscle, not involving LGR7 receptors. The adenylyl cyclase-stimulating effect of relaxin in the striatum and cardiac muscles was found to be decreased in the presence of C-terminal peptide 385-394 of the alpha(s) subunit of the mammalian G protein and to be blocked by treatment of membranes with cholera toxin. These data provide evidence that in the striatum and cardiac muscle, relaxin stimulates adenylyl cyclase via the LGR7 receptor, this being functionally linked with G(s) protein. It is also demonstrated that linkage of relaxin-activated LGR7 receptor with the G(s) protein is mediated by interaction of the C-terminal half of the third cytoplasmic loop of the receptor with the C-terminal segment of the alpha(s) subunit of the G protein.
In diet-induced obesity, metformin (MF) has weight-lowering effect and improves glucose homeostasis and insulin sensitivity. However, there is no information on the efficiency of MF and the mechanisms of its action in melanocortin-type obesity. We studied the effect of the 10-day treatment with MF at the doses of 200, 400 and 600 mg/kg/day on the food intake and the metabolic and hormonal parameters in female C57Bl/6J (genotype Ay/a) agouti-mice with melanocortin-type obesity, and the influence of MF on the hypothalamic signaling in obese animals at the most effective metabolic dose (600 mg/kg/day). MF treatment led to a decrease in food intake, the body and fat weights, the plasma levels of glucose, insulin and leptin, all increased in agouti-mice, to an improvement of the lipid profile and glucose sensitivity, and to a reduced fatty liver degeneration. In the hypothalamus of obese agouti-mice, the leptin and insulin content was reduced and the expression of the genes encoding leptin receptor (LepR), MC3- and MC4-melanocortin receptors and pro-opiomelanocortin (POMC), the precursor of anorexigenic melanocortin peptides, was increased. The activities of AMP-activated kinase (AMPK) and the transcriptional factor STAT3 were increased, while Akt-kinase activity did not change from control C57Bl/6J (a/a) mice. In the hypothalamus of MF-treated agouti-mice (10 days, 600 mg/kg/day), the leptin and insulin content was restored, Akt-kinase activity was increased, and the activities of AMPK and STAT3 were reduced and did not differ from control mice. In the hypothalamus of MF-treated agouti-mice, the Pomc gene expression was six times higher than in control, while the gene expression for orexigenic neuropeptide Y was decreased by 39%. Thus, we first showed that MF treatment leads to an improvement of metabolic parameters and a decrease of hyperleptinemia and hyperinsulinaemia in genetically-induced melanocortin obesity, and the specific changes in the hypothalamic signaling makes a significant contribution to this effect of MF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.