У роботі проведено огляд кіберфізичних біосенсорних та імуносенсорних систем, що є новим поколінням інформаційно-вимірювальних систем із використанням у конструкції біологічних матеріалів, які забезпечують їх високу селективність. Проведена класифікація досліджуваних систем відносно чутливих елементів і можливості використанням різних режимів фізико-хімічного перетворення вимірювальної величини. Розглянуто такі види кіберфізичних біосенсорних та імуносенсорних систем: електрохімічні; оптичні; на основі оксиду кремнію, кварцу та скла; на основі наноматеріалів; генетично кодовані або синтетичні флуоресцентні; мікробні, розроблені за допомогою синтетичної біології та генетичної інженерії. Досліджувані системи порівняно за технологією, специфічністю, порогом виявлення, тривалістю аналізу, вартістю та портативністю.
Розглянуто методи виготовлення електрохімічних кіберфізичних біосенсорних та імуносенсорних систем. Окремо представлено методи виготовлення, шляхом модифікування поверхні металевих і вуглецевих електродів із використанням біоматеріалів, таких як ферменти, антитіла або ДНК. Представлено оптичні досліджувані системи, що реалізуть свою дію за допомогою іммобілайзерів і можуть виготовлятися із золота, матеріалів на основі вуглецю, кварцу або скла. Описано найбільш важливі напрями використання кіберфізичних біосенсорних та імуносенсорних систем у лікувальних і діагностичних закладах, зокрема для моніторингу рівня глюкози в крові пацієнтів із цукровим діабетом, а також для розроблення нових лікарських засобів, біозондування та біомедицини. Зроблено висновок, що досліджувані системи з наноматеріалів на основі оксиду кремнію володіють найбільш високим потенціалом щодо застосування для біовізуалізаціі, біосенсорного аналізу та лікування онкологічнх захворювань.
Розглянуто мічені кіберфізичні біосенсорні та імуносенсорні системи з використанням генетичного кодування або синтетичної флуоресценції, що дало змогу вивчати біологічні процеси, в тому числі, різні молекулярні перетворення всередині клітин. Наведено переваги візуалізації in vivo за допомогою досліджуваних систем малих молекул з метою кращого розуміння клітинної активності та механізму дії ДНК, РНК та мікро-РНК. Описано клітинні біосенсорні та імуносенсорні системи, що можна застосовувати для моніторингу біохімічної потреби в кисні, токсичності в навколишньому середовищі, для виявлення пестицидів і важких металів, спостереженні за екологічною ефективністю при виробництві електроенергії. Зроблено висновок, що для створення високочутливих мініатюрних пристроїв потрібне розроблення різних мікро- і нано-кіберфізичних біосенсорних та імуносенсорних платформ із залученням інтегрованих технологій, які використовують електрохімічний або оптичний біоелектронні принципи з комбінацією біомолекул або біологічних матеріалів, полімерів і наноматеріалів.