In current work, the influence of static structural inclusions in heterogeneous highly scattering media such as biotissue on the results of laser speckle contrast imaging using both temporal and spatial processing algorithms has been investigated. The applicability of laser speckle contrast imaging technique has been studied in case of non-ergodic conditions. It was shown using the phantom model that increment of amount of static scatterers comparing to the dynamic ones in tissue causes significant error in results of temporal and spatial speckle contrast processing for the given camera exposure time. At the same time, the analysis of the spatial and temporal speckle contrast values, values of coefficient of speckle dynamics as well as results of Monte Carlo simulation of sampling volumes showed that presence of relatively thin static layer (up to 30% of all volume) cannot cause significant changes in results of laser speckle contrast imaging. The camera exposure time, as well as amount of frames for image processing can vary depending on the experiment goals. Finally, the proposed spatial and temporal algorisms of laser speckle contrast imaging were verified during transcranial visualization of the mouse brain vasculature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.