Multiwavelength UV-visible transmission spectrophotometry is a useful tool for the examination of micron-size particle suspensions in the context of particle size and chemical composition. This paper reports the reliability of this method to characterize the spectra of purified red blood cells both in their physiological state and with modified hemoglobin content. Previous studies have suggested the contribution of hypochromism on the particle spectra caused by the close electronic interaction of the encapsulated chromophores. Our research shows, however, that this perceived hypochromism can be accounted for by considering two important issues: the acceptance angle of the instrument and the combined scattering and absorption effect of light on the particles. In order to establish these ideas, spectral analysis was performed on purified and modified red cells where the latter was accomplished with a modified hypotonic shock protocol that altered the hemoglobin concentration within the cells. Moreover, the Mie theory was used to successfully simulate the spectral features and trends of the red cells. With this combination of experimental and theoretical exploration, definition of hypochromism has been extended to two subcategories.
The 2017–2018 influenza epidemic season in Russia was characterized by a relatively low morbidity and mortality. We evaluated herd immunity prior to the 2017–2018 influenza season in hemagglutination inhibition assay, and performed characterization of influenza viruses isolated from severe or fatal influenza cases and from influenza cases in people vaccinated in the fall of 2017. During the 2017–2018 epidemic season, 87 influenza A and B viruses were isolated and viruses of the 75 influenza cases, including selected viral isolates and viruses analyzed directly from the original clinical material, were genetically characterized. The analyzed A(H1N1)pdm09 viruses belonged to clade 6B.1, B/Yamagata-like viruses belonged to clade 3, and B/Victoria-like viruses belonged to clade 1A and they were antigenically similar to the corresponding vaccine strains. A(H3N2) viruses belonged to clade 3C.2a and were difficult to characterize antigenically and the analysis indicated antigenic differences from the corresponding egg-grown vaccine strain. The next generation sequencing revealed the presence of D222/G/N polymorphism in the hemagglutinin gene in 32% of the analyzed A(H1N1)pdm09 lethal cases. This study demonstrated the importance of monitoring D222G/N polymorphism, including detection of minor viral variants with the mutations, in the hemagglutinin gene of A(H1N1)pdm09 for epidemiological surveillance. One strain of influenza virus A(H1N1)pdm09 was resistant to oseltamivir and had the H275Y amino acid substitution in the NA protein. All other isolates were susceptible to NA inhibitors. Prior to the 2017–2018 epidemic season, 67.4 million people were vaccinated, which accounted for 46.6% of the country's population. Just before the epidemic season 33–47% and 24–30% of blood sera samples collected within the territory of Russia showed the presence of protective antibody titers against vaccine strains of influenza A and influenza B/Victoria-like, respectively. Mass vaccination of the population had evidently reduced the severity of the flu epidemic during the 2017–2018 influenza epidemic season in Russia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.