Introduction/Objective DMAIC (an acronym for Define, Measure, Analyze, Improve and Control) refers to a data- driven improvement cycle used for improving, optimizing, and stabilizing business processes and designs. Our goal was to utilize DMAIC principle of six sigma quality to improve histology slide quality. Methods/Case Report We “defined” the problem as suboptimal quality in endometrial biopsy slides (defects). Utilizing the DMAIC principle and adhering to a strict timeline, the defects found during baseline slide quality review were “measured” by linking the defects to specific histology competencies, which were addressed systematically for process improvement (PI). After PI, a follow up review (“improve” and “control” phases) was carried out to identify measurable outcomes as a testament to quality. Results (if a Case Study enter NA) During the problem “measurement” phase, the defects found in the baseline review of 175 slides were linked to four specific histology competencies (fixation, embedding, cutting, and staining). Processing was excluded as it is completely automated and standardized. Our analysis showed that 83.3 % of defects were linked to embedding (“tissue too dispersed”). As embedding competency depends on the size and nature of the tissue (e.g. mucus and blood admixed with tissue), grossing competency was also addressed along with embedding at the respective workstations. Recommendations were offered to the grosser, embedder, and cutter to reduce variables during the “improvement” phase. Follow up review was done on 196 slides. The number of defective slides decreased and the defects that linked to “tissue too dispersed” had an overall improvement of 91.3%. Once the PI is proven to be effective, in service to histotechnology personnel biannually were also offered during “control” phase. Conclusion We have demonstrated successful methods for improving histology slide quality utilizing DMAIC principle of quality improvement by six sigma methodology DMAIC principle can be creatively adapted in laboratory practice management to enhance quality.
Castor oil belongs to the group of nondrying oils, it is very viscous, weakly dissolved in gasoline and other organic solvents, does not freeze at low temperatures (minus 12-18 °C), flames up at high temperatures (plus 300-310 °C). That is why it is an unsurpassed lubricant when it comes to quality, especially for aviation engines and mechanisms operating under complicated conditions of the north. The oil is obtained from castor seeds by hot or cold pressing. Hot pressing ensures greater yield of oil, but its quality is worse, because poisonous substances, such as ricin and ricinin, get to the oil from seeds. That is why this oil is suitable only for technical needs. To obtain a high-quality product, the oil is to be purified. Existing traditional purification methods (filtration, settling, etc.) do not make it possible to get a high-quality product or are energy-and resource-consuming. That is why it is urgent to find new technologies for castor oil purification from plant impurities, which would allow reducing the cost of production and improving product quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.