В области трибологии перспективны магнитные смазочные масла, в которых для повышения их коллоидной устойчивости используют полимеры, однако их применение ограничено низкой намагниченностью коллоида. Повысить намагниченность наномасел возможно путем синтеза полимерных оболочек непосредственно на поверхности магнитных частиц в процессе получения наномасел. Описаны особенности технологии синтеза магнитных смазочных наномасел с полимерными сольватными оболочками на частицах, которые защищают их от коагуляции. Полимеризация молекул гидроксикислоты протекает по механизму поликонденсации на твердой поверхности магнетита. Вязкость магнитного коллоида возрастает из-за увеличения толщины сольватной оболочки. Исходя из этого предложено дифференциальное уравнение, которое показывает зависимость скорости роста вязкости коллоида от скорости реакции поликонденсации. Экспериментальная проверка уравнения показала, что оно выполняется с точностью до 8%. Полученное уравнение позволяет определить важную термодинамическую характеристику -энергии активации процесса синтеза полимерных оболочек на поверхности дисперсных частиц. Для расчетов нужно знать скорость изменения вязкости коллоида с дисперсионной средой без мономера (гидрокислоты). Поэтому, в процессе синтеза полимера отбираются пробы промежуточного магнитного коллоида небольшого объема, которые используются для определения вязкости коллоида и дисперсионной среды, содержащей мономер. Затем находится вязкость коллоида с чистой дисперсионной средой, необходимая для расчетов энергии активации реакции поликонденсации. По оценочным расчетам, ошибка определения энергии активации не превышает 11%. На практике, с помощью установленного значения энергии активации полимеризации, можно выполнять целенаправленный выбор оптимального температурно-временного режима стабилизации магнитного коллоида с целью получения магнитного наномасла с требуемыми характеристиками вязкости и агрегативной устойчивости. Экспериментальные исследования проводились на специально разработанных приборах для оценки коллоидной стабильности и динамической вязкости магнитных коллоидов. In the field of tribology, magnetic lubricating oils are promising, in which polymers are used to increase their colloidal stability, but their use is limited by the low magnetization of the colloid. It is possible to increase the magnetization of nanooils by synthesizing polymer shells directly on the surface of magnetic particles in the process of obtaining nanooils. The features of the technology for the synthesis of magnetic lubricating nanooils with polymeric solvation shells on particles, which protect them from coagulation, are described. Polymerization of hydroxy acid molecules proceeds by the mechanism of polycondensation on the solid surface of magnetite. The viscosity of the magnetic colloid increases due to the increase in the thickness of the solvate shell. Proceeding from this, a differential equation is proposed, which shows the dependence of the growth rate of the colloid viscosity on the rate of the polycondensation reaction. An experimental verification of the equation showed that it is fulfilled with an accuracy up to 8%. The resulting equation makes it possible to determine an important thermodynamic characteristic - the activation energy of the process of synthesis of polymer shells on the surface of dispersed particles. For calculations, it is necessary to know the rate of change in the viscosity of a colloid with a dispersion medium without a monomer (hydroacid). Therefore, in the process of the polymer synthesis, samples of the intermediate magnetic colloid of a small volume are taken, which are used to determine the viscosity of the colloid and dispersion medium containing monomers. Then the viscosity of the colloid with a pure dispersion medium is found, which is necessary for calculating the activation energy of the polycondensation reaction. According to estimates, the error in determining the activation energy does not exceed 11%. In practice, using the values of the activation energy of polymerization, it is possible to carry out a purposeful choice of the optimal temperature-time regime for stabilizing the magnetic colloid in order to obtain a magnetic nanooil with the required viscosity and aggregative stability characteristics. Experimental studies were carried out on specially designed instruments for assessing the colloidal stability and dynamic viscosity of magnetic colloids.
Известные в настоящее время магнитные смазочные наножидкости имеют недостаточно хорошие триботехнические характеристики при эксплуатации в режиме граничного трения. Предложен способ адаптации для граничного трения магнитных силоксановых наножидкостей, путем модификации их состава химически активными антифрикционными, противоизносными и противозадирными присадками. Создан ряд смазочных композиций магнитных наножидкости на основе полиэтилсилоксана ПЭС-5. Поведенные экспериментальные исследования показали, что наиболее значительное улучшение антифрикционных и противоизносных свойств наножидкостей достигается при введении в их структуру хлорсодержащих присадок Совол и 3Н2ТЭ. Добавление в наножидкость антиокислительной присадки ДФ-11, фторсодержащей присадки ЭО-1, металлоплакирующего соединения МКФ-18 не привело к значимому улучшению антифрикционных свойств. Установлено, что магнитные наножидкости с модифицирующими присадками, по трибосвойствам сопоставимы с традиционными немагнитными жидкими смазочными материалами и превосходят пластичные смазки на основе полиэтилсилоксана. Разработанные композиции на основе силоксановых наножидкостей, будут востребованы для смазывания подшипников качения и скольжения, зубчатых передач, контактных уплотнений, которые функционируют при низких и повышенных температурах в газовой среде или в условиях вакуума. Наиболее успешно они могут применяться в вакуумной и космической технике, для магнитных трибоузлов, где возможна только однократная заправка ограниченным объемом смазочного материала. Currently known magnetic lubricant nanofluids have insufficiently good tribological characteristics when operating in the boundary friction mode. An adaptation method is proposed for the boundary friction of magnetic siloxane nanofluids by modifying their composition with chemically active antifriction, antiwear and extreme pressure additives. A number of lubricating compositions of magnetic nanofluids based on polyethylsiloxane PES-5 have been created. Conducted experimental studies have shown that the most significant improvement in the antifriction and antiwear properties of nanofluids is achieved with the introduction of Sovol and 3N2TE chlorine additives into their structure. Adding to the nanofluid the antioxidant additive DF-11, the fluorine-containing additive EO-1, the metal-plating compound MKF-18 did not lead to a significant improvement in the antifriction properties. It has been established that magnetic nanofluids with modifying additives are comparable in tribological properties with traditional non-magnetic liquid lubricants and are superior to plastic lubricants based on polyethylsiloxane. The developed compositions based on siloxane nanofluids will be in demand for lubrication of rolling and sliding bearings, gears, contact seals, which operate at low and elevated temperatures in a gas environment or in a vacuum. Most successfully, they can be used in vacuum and space technology, for magnetic frictional units, where only one refueling with a limited amount of lubricant is possible.
Работа направлена на создание магнитометрического прибора для точного определения намагниченности насыщения магнитных наножидкостей и подобных по свойствам функциональных дисперсных материалов. В основе прибора лежит магнитометрический метод с холловскими преобразователями индукции, усовершенствованный с учетом особенностей физико-механических свойств жидкостей. Измерительная магнитная система прибора построена таким образом, чтобы с помощью постоянных магнитов можно было создавать однородное намагничивающее поле величиной до (2 ÷ 4)⋅10 А/м в рабочем зазоре, где установлена кювета с изучаемой магнитной наножидкостью. Под кюветой с магнитной наножидкостью в среднем ее сечении располагается преобразователь Холла, который служит для измерения напряженности намагничивающего магнитного поля. Второй преобразователь Холла, предназначенный для измерения индукции магнитного поля в веществе, установлен в канавке прямоугольного сечения и располагается по центру магнитной наножидкости в кювете. Относительная ошибка измерения намагниченности на приборе не превышала 2 % для магнитных наножидкостей с намагниченностью в диапазоне от 10 кА/м до 50 кА/м. Созданный прибор может использоваться для экспресс - измерений в лабораторных и промышленных условиях и не требует специальных профессиональных навыков. Показано, что аддитивная составляющая инструментальной погрешности измерений зависит от значений остаточного напряжения (ЭДС неэквипотенциальности), побочных гальваномагнитных эффектов и термо-ЭДС измерительного преобразователя. Мультипликативная составляющая связана с временной и температурной нестабильностью коэффициента преобразования и тока или напряжения питания. Методическая погрешность магнитометра вызвана тем, что для измерений индукции магнитного поля используется не полностью замкнутая магнитная цепь. Показано, что по своим метрологическим параметрам прибор отвечает международным стандартам на магнитные измерения магнитомягких материалов. Прибор позволил определить намагниченность коллоидных систем в магнитных полях начала парапроцессов, индивидуальную намагниченность наночастиц дисперсной фазы, агрегативную устойчивость коллоидов в магнитных и гравитационных полях, оценить размеры сольватной оболочки наночастиц. The work is aimed at creating a magnetometric device for accurate determining the saturation magnetization of magnetic nanofluids and similar properties of functional dispersed materials. The device is based on a magnetometric method with the Hall induction transducers, improved taking into account the peculiarities of the physical and mechanical properties of liquids. The measuring magnetic system of the device is designed in such a way that with the help of permanent magnets it is possible to create a uniform magnetizing field up to (2÷4)⋅10 A/m in a working gap where the cuvette with the studied magnetic nanofluid is installed. Under the cuvette with a magnetic nanofluid in its middle section is a Hall Converter, which serves to measure the strength of the magnetizing magnetic field. The second Hall Converter, designed to measure the magnetic field induction in a substance, is installed in a rectangular groove and is located in the center of the magnetic nanofluid in the cuvette. The relative error of measuring the magnetization on the device did not exceed 2% for magnetic nanofluids with a magnetization in the range from 10 kA/m to 50 kA/m. The created device can be used for Express measurements in laboratory and industrial conditions and does not require special professional skills. It is shown that the additive component of the instrumental measurement error depends on the values of the residual voltage (nonequipotential EMF), side galvanomagnetic effects and thermo - EMF of the measuring Converter. The multiplicative component is related to the time and temperature instability of the conversion coefficient and the current or voltage supply. The methodic error of the magnetometer is caused by the fact that not a fully closed magnetic circuit is used for measuring the magnetic field induction. It is shown that the device meets international standards for magnetic measurements of soft magnetic materials in terms of their metrological parameters. The device allowed us to determine the magnetization of colloidal systems in magnetic fields of a start paraprocess, individual magnetization of nanoparticles of the dispersed phase, the aggregative stability of colloids in magnetic and gravity fields to estimate the size of the solvation shell of the nanoparticles.
Работа посвящена изучению процессов, протекающих в граничном смазочном слое, в которых нанодисперсные магнитные частицы играют определяющую или значительную роль. Исследовалось трение между металлическими поверхностями смазанными маслами с различной концентрацией магнитной нанодисперсной фазы. Дисперсионная среда магнитных масел состояла из жидкостей с различными физико-химическими свойствами: диоктилсебацината, триэтаноламина, полиэтилсилоксана. Было показано, что интенсивность изнашивания поверхностей с твердостью выше, чем у наночастиц монотонно возрастает по мере увеличения концентрации частиц, а износ носит абразивный характер. Интенсивность изнашивания более мягких материалов проходит через минимум при концентрации частиц около 2 об.%. Магнитная сепарация крупных агломератов в масле позволяет на некоторое время уменьшить абразивный износ, пока они не образуются снова в условиях трения. Выявить закономерности влияния нанодисперсных частиц на силу трения не удалось, вероятно оно несущественное. Рассмотрено несколько примеров косвенного влияния нанодисперсных частиц на граничное трение. Во всех примерах определяющую роль играет огромная по площади активная поверхность частиц в единице объема масла. Например, в условиях трения может активно образовываться атомарный водород при химическом взаимодействии жирных кислот с поверхностью. Атомарный водород аккумулируется в подповерхностных порах, молизуется там. Повышенное давление в порах, создаваемое молекулами водорода, приводит к увеличению износа по механизму отслаивания. Представляют научный интерес установленные закономерности влияния нанодисперсных частиц на скорость формирования граничного смазочного слоя и коррозионный износ поверхностей, вызванный поверхностно-активными присадками в магнитном масле. The work is devoted to the study of processes occurring in the boundary lubricant layer, in which nanodisperse magnetic particles play a decisive or significant role. The friction between metal surfaces with lubricated oils of different concentrations of the magnetic nanodisperse phase was studied. The dispersion medium of magnetic oils consisted of liquids with various physico-chemical properties: dioctylsebacinate, triethanolamine, polyethylsiloxane. It has been shown that the wear intensity of surfaces with a hardness higher than that of nanoparticles monotonically increases with increasing the particle concentration, and wear is abrasive in nature. The wear rate of softer materials passes through a minimum at a particle concentration of about 2 vol.%. Magnetic separation of large agglomerates in oil allows for some time to reduce the abrasive wear until they are formed again under friction conditions. It was not possible to identify the regularities of the influence of nanodispersed particles on the friction force, it is probably insignificant. Several examples of the indirect effect of nanodispersed particles on the boundary friction are considered. In all the examples, the determining role plays huge area of the active surface of particles per unit volume of oil. For example, under conditions of friction, atomic hydrogen can be actively formed during the chemical interaction of fatty acids with the surface. Atomic hydrogen accumulates in the subsurface pores and is crystallized there. The increased pressure in the pores created by hydrogen molecules leads to an increase in wear by the peeling mechanism. The established regularities of the influence of nanodispersed particles on the rate of formation of the boundary lubricant layer and the corrosion wear of surfaces caused by surface-active additives in magnetic oil are of scientific interest.
Проведен анализ основных источников методических погрешностей магнитного ротационного вискозиметра, позволивший усовершенствовать конструкцию и исключить критические режимы исследований. Теоретическая оценка систематической погрешности прибора показала, что значение относительной ошибки измерений можно довести до значения менее 1%. Наибольший вклад в систематическую погрешность прибора вносит нестабильность температурного режима исследуемой наножидкости и неточность определения высоты слоя жидкости, контактирующего с измерительным цилиндром. Измерение вязкости эталонных жидкостей на магнитном вискозиметре показало, что экспериментальные значения незначительно, примерно на 0,9% завышены. Тарировка прибора на различных эталонных жидкостях позволила снизить суммарную ошибку измерений до десятых долей процента. Магнитный ротационный вискозиметр может найти применение при нестандартных научных исследованиях структуры и реологических характеристик наножидкостей, для оперативного контроля процессов синтеза магнитных жидкостей и аттестации магнитных наножидкостей, предназначенных для технического применения. An analysis is carried out of the main sources of methodological errors of the magnetic rotary viscometer. The analysis allowed to improve design and to eliminate critical modes of the research. Theoretical evaluations of the systematic error of the device showed that the value of the relative measurement error can be brought to a value of less than 1%. The greatest contribution to the systematic error of the device is made by the instability of the temperature regime of the nanofluid under study and by the inaccuracy of determining the height of the liquid layer in contact with the measuring cylinder. The measurement of the viscosity of the reference liquids on the magnetic viscometer showed that experimental values are slightly, by about 0.9% overestimated. Calibration of the device on various reference liquids allowed reducing the total measurement error down to tenths of a percent. The magnetic rotary viscometer can be used in non-standard scientific studies of the structure and rheological characteristics of nanofluids, for operational control of the processes of synthesis of magnetic liquids and certification of magnetic nanofluids intended for technical use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.