The work purpose consists in the accuracy increase and assurance of technological equipment manufactured with the wide use of common modules at the expense of the impact of joints contact stiffness. The investigation methods: a theoretical analysis of metal parts contact taking into account their microgeometry, experiments with the use of common modules and means for linear value measurements. The study showed that the value of contact deformations in joints at common modules use is comparable with tolerances for their manufacturing and must be taken into account at the computation of executive dimensions for parts of mating. The existing computations of the value of approach for small areas of a contact have considerable dimensions for which these procedures give large errors. The application extension of ready common modules in the technological equipment structures and in the joints increase requires design procedure corrections. It is necessary to improve the computation pro-cedures for parts contact approach and also the procedures for the formation and computation of complex spatial dimensional chains including contact deformations.
АннотацияТочное получение формыэто важнейшая, но далеко не единственная задача, которая решается при производстве деталей. Не менее важными являются также такие свойства, как: упругость и пластичность, прочность и износостойкость и др. Известно, что высокотемпературное воздействие на материал заготовки, которым сопровождается любой из известных процессов аддитивной обработки, негативно сказывается на вышеперечисленных свойствах. Важнейшей задачей аддитивных технологий является обеспечение качественной структуры материала и высоких эксплуатационных свойств получаемой детали при многократном увеличении производительности.Целью проведенных теоретических и практических исследований является разработка технологии, в которой к процессам аддитивной и субтрактивной обработки добавляется процесс упрочнения ударной волной деформации, что позволяет структурировать, уплотнить, упрочнить материал выращенного слоя, сформировать вместо растягивающих остаточных напряжений термической природы сжимающие. Выращивание детали производится дуговым наплавлением материала из проволоки. Такой подход обеспечивает на порядок более высокую производительность, но имеет издержки в виде дефектов структуры, высокой пористости и меньшей точности по сравнению с порошковыми аддитивными технологиями. Указанные недостатки компенсируются упрочняющей и механической обработкой в процессе получения детали.Методы исследованиясравнительный анализ структуры железоуглеродистого материала, полученного аддитивно-субтрактивной технологией и аддитивно-субтрактивно-упрочняющей технологией. Результаты и выводы. В упрочненном материале, в отличие от неупрочненного, практически отсутствуют скрытые полости. Размеры фазовых элементов феррита и перлита в материале, полученном по технологии с упрочнением, снижается более чем в пять раз. Твердость материала, выращенного с упрочнением, более чем в два раза превышает твердость материала, полученного без упрочнения. AbstractThe accurate shape obtaining is the most significant, but far from being the only problem which is solved at parts production. Not less important are also such properties as elasticity, plasticity, strength and durability and so on. It is well-known that high-temperature influence upon billet material which follows any of known processes of additive processing adversely affects the above-mentioned properties. The most significant task of additive techniques is ensuring material qualitative structure and high operating properties in a part manufactured at multiple increase of productivity. The purpose of theoretical and practical researches carried out consists in the development of the technology in which to the processes of additive and subtractive treatment there is added a process of hardening with shock wave deformation that allows structuring, strengthening, compacting the material of a layer grown forming compressive stresses instead of tensile residual stresses of thermal origin. The growth of a part is carried out by means of arc deposition with wire material. Such an approach ensures productivi...
At present a rapid development of additive technologies for the growth of metal and alloy products takes place. Each additive technology has its own rational field of application and its own characteristic set of advantages and disadvantages. The most promising technologies are new 3DMP-technologies of wire sedimentation/welding deposition by a method electric arc welding in combination with subtractive machining technologies (additive-subtractive technologies). The application of 3DMP-technologies in comparison with common and some powder technologies results in the considerable decrease of production costs and substantial increase of growth productivity, for them it is characteristic a high coefficient of initial material beneficial use. The advantage in use of additive-subtractive technologies (AST) consists in a possibility of the alternative use of additive and subtractive transitions at the formation of a part within the limits of one technological operation in a full compliance with the principle of community and constancy of technological bases. But AST peculiarity requires a complex solution of interrelated engineering and scientific problems including those in the field of design of products, material machining, engineering procedure automation and CAD systems. For instance, in consequence of that the realization of 3DMP-technology is possible only under conditions of complete process automation, in the presence of a subtractive module having 3-5 controlled coordinates, for the equipment on the whole the NC system is necessary which controls the execution unit displacement along six coordinate axes and more.
A promising direction of strengthening development is a combined strengthening by a surface plastic deformation with the further case hardening. There are considered possibilities for the creation of a multilayer heterogeneous structure with high strength and operation characteristics by a combined impact with a deformation wave and case hardening. The investigation results of the wave deformation strengthening of deposited metal allowing the support of a considerably higher level of material mechanical and operation properties as compared with rolled metal are presented. The results obtained allow recommending a wave deformation strengthening and combined technologies on its basis for operation properties increase of machinery in a wide range.
The problems of analyzing metallographic images and the method of their solution using modern software for the analysis of metallographic images are described. There is given an analysis of microstructure images as the main indicator of the surface layer quality by the example of studying the research results of strain wave hardening combinations and chemical-thermal treatment, in particular the influence of previous strain wave hardening and subsequent thermal and chemical- thermal treatment on the alloy steel microstructure or previous thermal and chemical- thermal treatment and subsequent strain wave hardening. On the basis of the analysis the effectiveness of strain wave hardening and chemical and thermal treatment is established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.