A number of framework amides with a ginsenol backbone have been synthesized using the Ritter reaction. We named the acetamide as Ginsamide. A method was developed for the synthesis of the corresponding amine and thioacetamide. The new compounds revealed a high activity against H1N1 influenza, which was confirmed using an animal model. Biological experiments were performed to determine the mechanism of action of the new agents, a ginsamide-resistant strain of influenza virus was obtained, and the pathogenicity of the resistant strain and the control strain was studied. It was shown that the emergence of resistance to Ginsamide was accompanied by a reduction in the pathogenicity of the influenza virus.
The influenza virus genome features a very high mutation rate leading to the rapid selection of drug-resistant strains. Due to the emergence of drug-resistant strains, there is a need for the further development of new potent antivirals against influenza with a broad activity spectrum. Thus, the search for a novel, effective broad-spectrum antiviral agent is a top priority of medical science and healthcare systems. In this paper, derivatives based on fullerenes with broad virus inhibiting activities in vitro against a panel of influenza viruses were described. The antiviral properties of water-soluble fullerene derivatives were studied. It was demonstrated that the library of compounds based on fullerenes has cytoprotective activity. Maximum virus-inhibiting activity and minimum toxicity were found with compound 2, containing residues of salts of 2-amino-3-cyclopropylpropanoic acid (CC50 > 300 µg/mL, IC50 = 4.73 µg/mL, SI = 64). This study represents the initial stage in a study of fullerenes as anti-influenza drugs. The results of the study lead us conclude that five leading compounds (1–5) have pharmacological prospects.
Introduction: Enteroviruses are non-enveloped viruses of the Enterovirus genus of the Picornaviridae family. They cause human diseases ranging from respiratory diseases to more severe cases, including polio, encephalitis, myocarditis, and pancreatitis. To date, there are no approved direct-acting antiviral drugs for the treatment of enterovirus diseases, therefore search for new small molecules - inhibitors of the enterovirus life cycle is important. Objective: to characterize the antiviral properties of new stable free radicals, verdazyls, and their precursors, leucoverdazyls. Leucoverdazyls have previously been shown to have antioxidant potential. Materials and methods: leucoverdazyls and verdazyls were synthesized in the Laboratory of coordination compounds, Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation. The following strains and cell cultures were used: influenza A virus (strain A/Puerto Rico/8/1934 H1N1), Coxsackie virus B3 (CVB3, Nancy strain), Coxsackie virus B4 (CVB4, Powers strain), Coxsackie virus B5, herpes simplex virus type 1 (HSV1) and human adenovirus 5 (Ad5) obtained from the collection of the Pasteur Research Institute (St. Petersburg). The following cell cultures were used: MDCK (ATCC #CCL-34), Vero (ATCC #CCL-81), A549 (ATCC #CCL-185). Infectious activity of viruses was assessed by end point titration. The cytoprotective activity and cytotoxicity of the compounds were evaluated using MTT test. The antiviral activity of the compounds was evaluated in the viral yield reduction assay. The virucidal activity of the compounds was evaluated after incubation of the compounds in a cell-free system with Coxsackie B4 virus for 1 hour. To investigate the mechanism of action of the leader compound, a time-of-addition assay was performed. Results: Leucoverdazyls, unlike verdazyls, have cytoprotective activity when a permissive culture is infected with the Coxsackie B3 virus. The leading compound was identified: 1a, which demonstrated a high inhibitory ability against a wide panel of influenza B enteroviruses in micromolar range (IC50=5.48 M and 0.72 M for Coxsackie B3 and Coxsackie B4, respectively) and its activity was superior to pleconaril (IC50=15.2 and IC50=1.91). Nevertheless, pleconaril acted as a more powerful inhibitor than 1a towards Coxsackievirus B5. The compound showed only slight activity against influenza A (RNA virus), no activity against Ad5 and HSV1 (DNA viruses). 1a have no virucidal activity. The maximum decrease in the titers of viral progeny with the addition of 1a was observed in the early and middle stages of the life cycle of the Coxsackie virus. Conclusion: Leucoverdazyls are potent inhibitors of group B enteroviruses in vitro. Leucoverdazyl 1a doesnt belong to capsid binder class of inhibitors and has no virucidal activity against coxsackievirus. Further studies are needed to elucidate their precise mechanisms of action including assessment of its direct impact on intracellular ROS generation, resistant clone selection and mapping of resistance mutations. We plan to expand the library of leucoverdazyls through targeted chemical modifications in order to disclose its pharmacophore and improve their virus-inhibiting properties. Nevertheless, the results of the study can serve as a basis for future development of novel antivirals to use in monotherapy or in combinational treatment of enteroviral infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.