институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых», Муром, Россия Аннотация Прогнозирование изменений параметров временных рядов является актуальной задачей при мониторинге исследуемых процессов в цифровых информационных системах управления при исследовании проблем увеличения горизонта предсказания и минимизации погрешности прогноза. В работе исследуются алгоритмы прогноза, основанные на моделях, воспроизводящих динамику временного ряда в форме искусственных нейронных сетей. Получены уравнения функционирования и обучения искусственной нейронной сети в матричной форме, получен алгоритм обратной подстановки, с помощью которого можно увеличить глубину прогноза. В работе представлено решение задачи прогноза, состоящее в нахождении оценок предсказания посредством минимизации функции потерь-квадрата нормы отклонения оценок от наблюдаемых значений временного ряда и в определении коэффициентов модели алгоритмом обучения искусственных нейронных сетей итерационным методом обратного распространения ошибок. Применение разработанных алгоритмов позволило построить структурную схему реализации нейросетевого прогнозирования, с помощью которого можно получить достаточно точное представление об изменениях параметров временных рядов в системах мониторинга исследуемых процессов по критериям длительности и минимизированной погрешности получения прогноза. Ключевые слова: прогнозирование, информационные системы управления, функциональный ряд, нейронная сеть, временной ряд, трехслойный персептрон. Цитирование: Кропотов, Ю.А. Метод прогнозирования изменений параметров временных рядов в цифровых информационно-управляющих системах / Ю.А. Кропотов,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.