The results of three-year research on the use of allogeneic mesenchymal stem cells of adipose tissue (AMSCs) in the treatment of skin burns of II-III degree are presented. in a complex with wounds dressing of nanofibers chitosan and copolyamide, hyaluronic acid. It was found that with surgical necrectomy, introduction of AMSCs and substitution of defects with natural polymer coatings, the healing time is reduced by 89% (p < 0.05). Isolated administration of MSC reduces the healing period by no more than 5% (p > 0.05). The combined use of wounds dressings of nanofibers chitosan and copo lyamide with MSC accelerates the regeneration process by 26% (p < 0.05), with the introduction of AMSCs accelerating the development of granulation tissue by the fifth day of observation by 83% (p < 0.01). Joint use of wound coverings on the basis of hyaluronic acid with AMSCs is accompanied by an increase in the number of vessels of the microcirculatory bed in the defect area by 185% (p < 0.01). Clinical evaluation of the effectiveness of drugs with stem cells – a gel for topical application and a suspension of MSC LC for injection administration demonstrate their ability to optimize regeneration in the burn zone. Application of gel with AMSCs reduces the duration of epithelialization of border (dermal) burns by 2.2-2.4 times, with the final healing period being reduced by 59% (p < 0.01) and the suppuration frequency by 30% (p < 0.05). The introduction of a suspension of AMSCs into the zone of deep burn increases the frequency of engraftment of autografts, stimulates angiogenesis and proliferation of fibroblasts in the superficial and deep layers of the dermis. In the area of MSC administration, the LC perfusion level and the amplitude of blood flow fluctuation are twice as high as the values in the zones without the introduction of cells.
BACKGROUND: Currently, numerous techniques or medical devices that allow complete or partial restoration of the lost skin within a short time remain as subjects of development. Many studies have shown the effectiveness of using stem cells in the treatment of full-thickness skin defects, but their use remains very limited. At present, there is no consensus among researchers about the advisability of the use of stem cells in the treatment of burns as well as about the method of their introduction. AIM: This study aimed to examine the possibility of accelerating the reparative histogenesis of tissues in the zone of deep skin burns using cultures of adipogenic mesenchymal cells, as well as to evaluate the effectiveness of various methods of introducing cultures of these cells into the defect zone. MATERIALS AND METHODS: An experimental study was carried out on small laboratory animals (rats). After simulating a grade III burn, mesenchymal stem cells were transplanted and superficially applied to the wound surface or injected under the fascia. In the control group, no wound treatment was performed. To assess the effectiveness of the wound-healing preparations, the appearance of wounds was assessed daily, the nature of the discharge and presence and type of granulations were noted, and the timing of scab rejection and wound healing was recorded. The wound area was assessed using a planimetric method. A histological examination of wound biopsies was carried out on days 7, 14, 21, and 28 of observation. RESULTS: The application of adipogenic mesenchymal stem cells demonstrated the greatest efficiency on the developed burn model. Subfascial administration was less effective, but this method achieved a significant acceleration of wound healing in comparison with the control group. An increase in the healing index by 56.6% demonstrates the highest intensity of reparative regeneration in animals applied with adipogenic mesenchymal stem cells. CONCLUSIONS: The preliminary results show that the application of adipogenic mesenchymal stem cells on the skin defect is more effective than subfascial administration based on the healing index. The use of adipogenic mesenchymal stem cells may substantially increase the effectiveness of the treatment of full-thickness skin defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.