Quantum bits (qubits) are the basic building blocks of any quantum computer.
Superconducting qubits have been created with a 'top-down' approach that
integrates superconducting devices into macroscopic electrical circuits [1-3],
whereas electron-spin qubits have been demonstrated in quantum dots [4-6]. The
phase coherence time (Tau2) and the single qubit figure of merit (QM) of
superconducting and electron-spin qubits are similar -- Tau2 ~ microseconds and
QM ~10-1000 below 100mK -- and it should be possible to scale-up these systems,
which is essential for the development of any useful quantum computer.
Bottom-up approaches based on dilute ensembles of spins have achieved much
larger values of tau2 (up to tens of ms) [7, 8], but these systems cannot be
scaled up, although some proposals for qubits based on 2D nanostructures should
be scalable [9-11]. Here we report that a new family of spin qubits based on
rare-earth ions demonstrates values of Tau2 (~ 50microseconds) and QM (~1400)
at 2.5 K, which suggests that rare-earth qubits may, in principle, be suitable
for scalable quantum information processing at 4He temperatures
Static magnetic susceptibility, crystal field and exchange interactions in rare earth titanate pyrochlores Malkin, B. Z.; Lummen, T. T. A.; van Loosdrecht, P. H. M.; Dhalenne, G.; Zakirov, A. R. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
AbstractThe experimental temperature dependence (T = 2-300 K) of single crystal bulk and site susceptibilities of rare earth titanate pyrochlores R 2 Ti 2 O 7 (R = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) is analyzed in the framework of crystal field theory and a mean field approximation. Analytical expressions for the site and bulk susceptibilities of the pyrochlore lattice are derived taking into account long range dipole-dipole interactions and anisotropic exchange interactions between the nearest neighbor rare earth ions. The sets of crystal field parameters and anisotropic exchange coupling constants have been determined and their variations along the lanthanide series are discussed.
Optical absorption spectra of the Yb 2 Ti 2 O 7 single crystals and luminescence spectra of the Y 2 Ti 2 O 7 :Yb (1%) polycrystalline samples were registered at temperatures 4.2-300 K. These spectra and earlier published data on magnetic properties of Yb 3+ ions and on the temperature dependence of the electric field gradient at Yb nuclei in Yb 2 Ti 2 O 7 were used to analyze the crystal-field parameters in rare-earth titanates with the pyrochlore structure. The self-consistent sets of crystal-field parameters for rare-earth ions in the 16d sites with the D 3d symmetry that describe satisfactory all known single-ion magnetic properties and low-energy excitations in R 2 Ti 2 O 7 crystals (R = Tb, Ho, Er, Tm, Yb) are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.