S u m m a r yThe features of soil microbiome may be an universal and very sensitive indicator of soil state used for optimization and biologization of agriculture systems. However, this approach to the matter requires a preliminary analysis of microbiomes composition in different types of soils. An analogical taxonomic investigations presented difficult task formerly and took considerable material and time expenditures. The introduction to molecular ecology of the new progeny methods of sequencing permits to increase both a number of revealed microorganism species and analyzed ecotops. The authors made the primary analysis of microbial associations with the use of pyrosequencing of soil metagenome. For the study, the collection of soils from different regions of Russia (19 samples) and also from the Crimea (Ukraine, 1 sample) was created. The bacteria from phylas of Proteobacteria (up 59.3 %), Actinobacteria (up 55.4 %), Acidobacteria (up 26.5 %), Verrucomicrobia (up 13.6 %), Bacteroidetes (up 10.5 %), Firmicutes (up 8.2 %), Gemmatimonadetes (up 6.9 %), Chloroflexi (up 5.7 %) and archaea from Crenarchaeota phyla were dominating in microbial associations. The comparison of taxonomic structure of microbial associations indicates that physiochemical factors (acidity and moisture of soil) have a more influence on prokaryote biodiversity than other factors (for example, type of soil or sampling point). So the soils from south regions with lesser moisture contain more the actinobacteria, when the moister north soils contain mainly the proteobacteria. The soils with low pH are characterized by a raise of acidobacteria percent.Keywords: soil, amplicon library, 16S rRNA, microbiome, taxonomy.Taxonomic description of microbial communities for a long time was an intractable problem with significant material and time costs. The complexity of cloning procedure and further sequencing of nucleotide chains impose limitations on number of identified species and investigated habitats (1). A notable advance was achieved by the new generation methods introduced in molecular ecology, e.g. pyrosequencing (2, 3). These approaches have improved the performance of sequencing from hundreds (Sanger's method) to thousands of nucleotide sequences, which now allows the most accurate identification of complex multicomponent systems such as soil microbial communities. Currently, several international projects are being working on characterization of the global microbial community. Thus, Earth Microbiome Project (http://www.earthmicrobio-me.org/) has already collected the data on taxonomic structure of microbiomes of different ecological niches obtained with the use of novel sequencers. Within the framework of this project it has been already investigated more than 9.000 samples, i.e. over 800 million nucleotide sequences. However, for Russia, this database contains just about a dozen of samples related to permafrost. The presented work is aimed at filling the existing gap. This task is particularly important in Russia, whose territory exhibits...