The bacterial action of gentamicin and that of a mixture of gentamicin and 15-nm colloidal-gold particles onEscherichia coliK12 was examined by the agar-well-diffusion method, enumeration of colony-forming units, and turbidimetry. Addition of gentamicin to colloidal gold changed the gold color and extinction spectrum. Within the experimental errors, there were no significant differences in antibacterial activity between pure gentamicin and its mixture with gold nanoparticles (NPs). Atomic absorption spectroscopy showed that upon application of the gentamicin-particle mixture, there were no gold NPs in the zone of bacterial-growth suppression in agar. Yet, free NPs diffused into the agar. These facts are in conflict with the earlier findings indicating an enhancement of the bacterial activity of similar gentamicin–gold nanoparticle mixtures. The possible causes for these discrepancies are discussed, and the suggestion is made that a necessary condition for enhancement of antibacterial activity is the preparation of stable conjugates of NPs coated with the antibiotic molecules.
In recent years, considerable effort has been devoted to the development and investigation of systems for controlled delivery of drugs. Targeted delivery of drugs significantly increases their efficacy and allows the total drug concentration in the organism to be considerably decreased. In order to solve this task, special containers/carriers have been designed possessing preset and controlled physicochemical and mechanical properties. The function of such containers can be performed, for example, by polymeric micelles [1][2][3][4], liposomes [5], emulsions [4, 6, 7], and colloidal particles. This class also includes polyelectrolyte (PE) microcapsules obtained by the method of polyion assembly, which consists in sequential adsorption of oppositely charged PE molecules on the surface of colloidal particles (templates), followed by the dissolution and removal of the initial core [8,9]. Using this approach, it is possible to obtain capsules with a broad range of preset dimensions (from 50 nm to 50 µ m) and a broad spectrum of shell materials. Indeed, the shells of microcapsules can be made of almost any synthetic and natural PEs [8,[10][11][12][13], lipid bilayers, inorganic nanoparticles (e.g., of silver, gold, or iron(III) oxide) [14][15][16], and polyvalent metal ions. The core (template) material can be selected from colloidal particles of various kinds with diameters ranging from tens of nanometers to several tens of microns [8,10,[17][18][19]. The capsule walls can also be controlled with respect to thickness, functional role, and permeability to any low-and high-molecular-mass compounds [20][21][22].The unique properties of PE microcapsules make it possible to use them in various fields of science and technology, such as biotechnology, cosmetics, the food industry, and medicine. The main advantage to such capsules in medical diagnostics is possibility of filling them with various drugs [23] and controlling their properties (e.g., elasticity and deformability) by varying the shell composition, template material, solvent [24], and the nature and number of PE layers. However, in order to ensure the desired result, a container must release the encapsulated drug in the immediate vicinity of damaged cells. For this purpose, inorganic magnetic nanoparticles of Fe 3 O 4 (magnetite) possessing pronounced magnetic properties can be introduced in the shell composition at the synthesis stage, which makes it possible to control the motion of capsules under an applied external magnetic field. Magnetite nanoparticles also possess certain advantages from a pharmaceutical standpoint: (i) the surface of these particles can be readily modified with compounds ensuring the biocompatibility and selective adsorption of microcapsules on damaged cells; (ii) the magnetic parameters of nanoparticles make their local concentration possible with the aid of magnetic fields [25][26][27]. The magnetic-fieldcontrolled delivery and localization of magnetic nanoparticles with a preset magnetic transition temperature Atomic Force Microscopy Ch...
Хлебцов Борис Николаевич, доктор физико-математических наук, ведущий научный со-трудник лаборатории нанобиотехнологии Института биохимии и физиологии растений и микроорганизмов Российской академии наук (Саратов), khlebtsov_b@ibppm.ru Ханадеев Виталий Андреевич, кандидат физико-математических наук, старший научный сотрудник лаборатории нанобиотехнологии Института биохимии и физиологии растений и микроорганизмов Российской академии наук (Саратов), khanadeev_v@ibppm.ru Пылаев Тимофей Евгеньевич, кандидат биологических наук, ученый секретарь Института биохимии и физиологии растений и микроорганизмов Российской академии наук (Сара-тов), pylaev_t@ibppm.ru Хлебцов Николай Григорьевич, доктор физико-математических наук, заведующий лабо-раторией нанобиотехнологии Института биохимии и физиологии растений и микроор-ганизмов Российской академии наук (Саратов); профессор кафедры материаловедения, технологии и управления качеством, Саратовский национальный исследовательский госу-дарственный университет имени Н. Г. Чернышевского, khlebtsov@ibppm.ru Обсуждается применение метода динамического рассеяния света (ДРС) для определения размеров силикатных и коллоидных золотых наночастиц с использованием приборов Zetasizer Nano ZS (Malvern, UK) и PhotoCor («PhotoCor», Россия). Показано, что средние ДРС диаметры наносфер диоксида кремния (от 50 до 1000 нм) находятся в хорошем согласии с данными трансмиссионной электронной микроскопии (ТЭМ), однако ДРС рас-пределение по размерам обычно уширено по сравнению с данными ТЭМ. Для сильно рассеивающих золотых наночастиц (ЗНЧ) с диаметром более 30-40 нм отличие их формы от сферической и влияние вращательной диффузии приводит к появлению ложного пика в области размеров около 5-10 нм. В этом случае некритическое использование метода ДРС может дать неприемлемые результаты для распределений по объему или числу частиц по сравнению с данными ТЭМ. Для поглощающих ЗНЧ с диаметром менее 20 нм и слабым рассеянием метод ДРС часто дает второй ложный пик в распределении интенсивностей в области больших размеров. Обсуждаются практические методы решения проблемы ложных пиков. Ключевые слова: наночастицы диоксида кремния, золотые наночастицы, распреде-ление частиц по размерам, динамическое рассеяние света, электронная микроскопия, спектроскопия поглощения.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.