Atomic clusters often show unique, size-dependent properties and have become a fertile ground for the discovery of novel molecular structures and chemical bonding. Here we report an investigation of the B₁₉⁻ cluster, which shows chemical bonding reminiscent of that in [10]annulene (C₁₀H₁₀) and [6]circulene (C₂₄H₁₂). Photoelectron spectroscopy reveals a relatively simple spectrum for B₁₉⁻, with a high electron-binding energy. Theoretical calculations show that the global minimum of B₁₉⁻ is a nearly circular planar structure with a central B₆ pentagonal unit bonded to an outer B₁₃ ring. Chemical bonding analyses reveal that the B₁₉⁻ cluster possesses a unique double π-aromaticity in two concentric π-systems, with two π-electrons delocalized over the central pentagonal B₆ unit and another ten π-electrons responsible for the π-bonding between the central pentagonal unit and the outer ring. Such peculiar chemical bonding does not exist in organic compounds; it can only be found in atomic clusters.
Aromaticity is an important concept in chemistry primarily for organic compounds, but it has been extended to compounds containing transition-metal atoms. Recent findings of aromaticity and antiaromaticity in all-metal clusters have stimulated further research in describing the chemical bonding, structures and stability in transition-metal clusters and compounds on the basis of aromaticity and antiaromaticity, which are reviewed here. The presence of d-orbitals endows much more diverse chemistry, structure and chemical bonding to transition-metal clusters and compounds. One interesting feature is the existence of a new type of aromaticity-delta-aromaticity, in addition to sigma- and pi-aromaticity which are the only possible types for main-group compounds. Another striking characteristic in the chemical bonding of transition-metal systems is the multi-fold nature of aromaticity, antiaromaticity or even conflicting aromaticity. Separate sets of counting rules have been proposed for cyclic transition-metal systems to account for the three types of sigma-, pi- and delta-aromaticity/antiaromaticity. The diverse transition-metal clusters and compounds reviewed here indicate that multiple aromaticity and antiaromaticity may be much more common in chemistry than one would anticipate. It is hoped that the current review will stimulate interest in further understanding the structure and bonding, on the basis of aromaticity and antiaromaticity, of other known or unknown transition-metal systems, such as the active sites of enzymes or other biomolecules which contain transition-metal atoms and clusters.
We have investigated the structural and electronic properties of the B(17)(-) and B(18)(-) clusters using photoelectron spectroscopy (PES) and ab initio calculations. The adiabatic electron detachment energies of B(17)(-) and B(18)(-) are measured to be 4.23 ± 0.02 and 3.53 ± 0.05 eV, respectively. Calculated electron detachment energies are compared with experimental data, confirming the presence of one planar C(2v) ((1)A(1)) isomer for B(17)(-) and two nearly isoenergetic quasi-planar C(3v) ((2)A(1)) and C(s) ((2)A') isomers for B(18)(-). The stability and planarity/quasi-planarity of B(17)(-) and B(18)(-) are ascribed to σ- and π-aromaticity. Chemical bonding analyses reveal that the nature of π-bonding in B(17)(-) and B(18)(-) is similar to that in the recently elucidated B(16)(2-) and B(19)(-) clusters, respectively. The planar B(17)(-) cluster can be considered as an all-boron analogue of naphthalene, whereas the π-bonding in the quasi-planar B(18)(-) is reminiscent of that in coronene.
The structures and bonding of CB6-, C2B5-, and CB62- are investigated by photoelectron spectroscopy and ab initio calculations. It is shown that the global minimum structures for these systems are distorted heptacyclic structures. The previously reported hexacyclic structures with a hypercoordinate central carbon atom are found to be significantly higher in energy and were not populated under current experimental conditions. The reasons why carbon avoids hypercoordination in these planar carbon-boron clusters are explained through detailed chemical-bonding analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.