The paper presents the results of ab initio simulation of hydrogen properties in beryllium. Both interstitial hydrogen positions in the lattice and various hydrogen positions in a vacancy have been studied. The most energetically favorable interstitial hydrogen configuration among the four considered high-symmetry configurations is the basal tetrahedral one, in agreement with the earlier predictions. The most probable diffusion pathway for hydrogen atoms in the bulk involves the exchange of octahedral and basal tetrahedral positions with the effective migration energy of ϳ0.4 eV. For hydrogen atom in a vacancy, an off-center ͑nearly basal tetrahedral͒ configuration is definitely preferred. Addition of more hydrogen atoms to a vacancy remains energetically favorable up to at least five hydrogen atoms, though the binding energies fall down with the increase in the number of hydrogen atoms in the vacancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.