Approximately 20 experimental fires were conducted on forest plots of 1–4 ha each in 2000–07 in two types of boreal forests in central Siberia, and 18 on 6 × 12-m plots in 2008–10. These experiments were designed to mimic wildfires under similar burning conditions. The fires were conducted in prescribed conditions including full documentation on pre-fire weather, pre-fire and post-fire forest fuels, fire intensities, and other biological, physical and chemical parameters. The amount of particulate matter emitted during a typical fire averaged 0.6 t ha–1 and ranged within 0.2–1.0 t ha–1 depending on burning conditions. Particulates accounted for ~1–7% of the total mass of the consumed biomass during a typical forest fire (10–30 t ha–1 based on our data from 2000–07). Most of the particulate matter consists of organic substances, 77% on average, with a range of 70–90%. Elemental carbon averaged 8%, with a range of 2–18%. Trace element compositions and amounts of particulates indicate that there was no actual difference in the element emissions sampled from the fires conducted in the two forest types (6–8% in larch forest and 8% in pine forest). Most of the particulate matter, 90–95%, consists of submicrometre and near-micrometre particles ~0.1–5 μm in diameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.