The article provides an overview of the current state of research in the field of requirements for the quality of potatoes for processing them into potato products. It is noted that the quality of potatoes with white pulp is determined by the mass fraction of: dry matter over 20 %; reducing sugars 0.2-0.5 %, glycoalkaloids no more than 200 mg/kg; starch not less than 16 %. For potatoes with pigmented pulp in addition to these indicators it is necessary to take into account the mass fraction of anthocyanins (over 0.5 %), which are effective antioxidants. The review presents the information on changes in the content of glycoalkaloids in potato tubers with pigmented pulp depending on the type of processing. The objective of experimental research is to analyze the qualitative indicators of native potato varieties with white and pigmented pulp to determine the practicability of their processing into potato products and further using as a starting material for selection. As research objects were selected 21 potato varieties with white pulp and 8 potato varieties with pigmented (colored) pulp. As a result of evaluation of the feasibility of using potatoes with white pulp 7 varieties out of 21 varieties of potatoes can be recommended for the production of potato products (Kamelot, Fritella, Rubin, Triumf, Ariya, Izyuminka, Mirazh). It is shown that the program «Statistica 12» can be used to assess the quality of potatoes on indicators of their suitability for processing into potato products. It was determined that the mass fraction of glycoalkaloids in the potato tuber is an important characteristic of the variety for its using in the production of potato products and as a table potato. Correlations between the mass fraction of potato dry matter and the mass fraction of glycoalkaloids (r = 0.47) and between the mass fraction of reducing sugars and the mass fraction of glycoalkaloids (r = 0.37) were established. The increasing in the mass fraction of these compounds is unwanted, and therefore, it is necessary to control their concentrations for choosing varieties for processing and as a starting material for the selection. Based on the analysis of the results of the evaluation of 8 experimental samples of potatoes with pigmented pulp, one sample was selected to be recommended for processing into potato products (VNIIKX-1), and two samples can be recommended as a starting material for the selection of table varieties with a high anthocyanin mass fraction (VNIIKX-4 and Indigo).
The aim of the work was the optimization of parameters for the synthesis of protein composites with an increased biological value from dry wheat gluten and pea, rice, amaranth, potato, oat concentrates with the enzyme transglutaminase. Using the program developed on the base of Monte Carlo counting method, taking into the amino acid composition of the concentrates, were determined ratios and amino acid score for the protein-protein composites: dry wheat gluten (DWG), concentrates: pea (PEC), potato (POC), oat (OC), rice (RC), amaranth (AMC). Composites of composition DWG / PEC, DWG / POC, DWG / AMC, POC / OC, PEC / RC, PEC / POC was enriched with deficient amino acids. Using the method of formol titration, was determined the influence duration, concentration of enzyme and hydromodule on the amount of amine nitrogen. Were used methods for planning and processing data in the Matematika and table Curve 3D programs, were obtained equations and optimal values were identified at which the amount of amine nitrogen during the synthesis remained minimal. In the DWG / AMC composite, the functional properties were 1.1–2.0 times higher than the properties of the initial protein products, indicating its greater efficiency in food.
The aim of the work was to study the dependence of the functional properties of dry wheat gluten (DWG) on the quality indicators obtained after regeneration of its raw form, and amino acid composition. Given that the main direction of use of DWG is the production of flour and bread, the data on the relationship are necessary to predict and increase its use in the production of confectionery, sausage products and other food products. We used 19 samples of the DWG produced by «BM» (Kazakhstan), 3 samples obtained from strong, weak, and average wheat grain quality, and methods for determining the yield and compression deformation (elasticity), the hydration ability of the regenerated raw SPK, amino acid and fractional composition. It is established that the functional properties of the DWG can be predicted on the basis of hydration and compression deformation (elasticity). The DWG with the hydration of 190–200% had the highest foaming capacity, and the most fat emulsifying ability with values of 140–150%. In order to provide greater foaming ability, it is advisable to use the SEC with compression deformation of 70-80 units. app., greater ability to emulsify and bind fat - with values of 60-80 units. app., and to bind water - with an indicator of DWG 50-70 units. app. For the solubility of the DWG proteins, a high positive correlation with the sum of non-polar amino acids of whole gluten and a negative - gliadin was established. For water-binding capacity (WBC) of gluten, an inverse dependence on the sum of polar amino acids of both glutenin fractions (r = -0.67 and -0.98) is characteristic, for LSS, a direct dependence on the sum of polar amino acids of gliadin (r = 0.78) and whole gluten (r = 0.95), the reverse of the amount of non-polar amino acids of soluble and insoluble glutenin (r = 0.86-0.92). WBC of gluten is inversely dependent on the sum of the polar amino acids of both glutenin fractions (r = -0.67 and -0.98), for the fat binding one is directly dependent on the sum of the polar amino acids of gliadin (r = 0.78) and whole gluten (r = 0.95), inverse - from the sum of non-polar amino acids of soluble and insoluble glutenin (r = 0.86-0.92). Fat-emulsifying capacity (FEC) positively correlated with the sum of non-polar amino acids of the whole complex of gluten and gliadin (r = 0.70-0.86) and negatively with the sum of polar amino acids of SEC and all its fractions (-0.62-0.84). Foaming capacity (FC) is interrelated with the sum of non-polar amino acids of gliadin and both fractions of insoluble glutenin (r = 0.79-0.95).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.