A hybrid nanocomposite material has been obtained by in situ formation of an inorganic network in the presence of a preformed organic polymer. Chitosan biopolymer and tetraethoxysilane (TEOS), which is the most common silica precursor, were used for the sol-gel reaction. The obtained composite chitosan-silica material has been characterized by physicochemical methods such as differential thermal analyses (DTA); carbon, hydrogen, and nitrogen (CHN) elemental analysis; nitrogen adsorption/desorption isotherms, scanning electron microscopy (SEM); and Fourier transform infrared (FTIR) spectroscopy to determine possible interactions between silica and chitosan macromolecules. Adsorption of microquantities of V(V), Mo(VI), and Cr(VI) oxoanions from the aqueous solutions by the obtained composite has been studied in comparison with the chitosan beads, previously crosslinked with glutaraldehyde. The adsorption capacity and kinetic sorption characteristics of the composite material were estimated.
Two types of gold nanoparticles, covered with SiO 2 shell and located on the SiO 2 large nanoparticle-carrier, have been synthesized and used as antiviral agents against adenoviruses. Both antiviral effect and virucidal action of the nanoparticles have been studied. It has been shown that both types of nanoparticles demonstrate antiviral action. Dependence of antiviral activity of nanoparticles on their concentration has been studied. Nonmonotonic dependence of the antiviral effect on nanoparticles concentration has been observed and discussed. The antiviral action of complex nanoparticles against adenovirus is important because of low toxicity of the gold nanoparticles covered with SiO 2 shell and of Au-SiO 2 carrier nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.