Concurrent EEG and fMRI acquisitions in resting state showed a correlation between EEG power in various bands and spontaneous BOLD fluctuations. However, there is a lack of data on how changes in the complexity of brain dynamics derived from EEG reflect variations in the BOLD signal. The purpose of our study was to correlate both spectral patterns, as linear features of EEG rhythms, and nonlinear EEG dynamic complexity with neuronal activity obtained by fMRI. We examined the relationships between EEG patterns and brain activation obtained by simultaneous EEG-fMRI during the resting state condition in 25 healthy right-handed adult volunteers. Using EEG-derived regressors, we demonstrated a substantial correlation of BOLD signal changes with linear and nonlinear features of EEG. We found the most significant positive correlation of fMRI signal with delta spectral power. Beta and alpha spectral features had no reliable effect on BOLD fluctuation. However, dynamic changes of alpha peak frequency exhibited a significant association with BOLD signal increase in right-hemisphere areas. Additionally, EEG dynamic complexity as measured by the HFD of the 2–20 Hz EEG frequency range significantly correlated with the activation of cortical and subcortical limbic system areas. Our results indicate that both spectral features of EEG frequency bands and nonlinear dynamic properties of spontaneous EEG are strongly associated with fluctuations of the BOLD signal during the resting state condition.
Altered functional connectivity of the amygdala has been observed in a resting state immediately after fear learning, even one day after aversive exposure. The persistence of increased resting-state functional connectivity (rsFC) of the amygdala has been a critical finding in patients with stress and anxiety disorders. However, longitudinal changes in amygdala rsFC have rarely been explored in healthy participants. To address this issue, we studied the rsFC of the amygdala in two groups of healthy volunteers. The control group participated in three fMRI scanning sessions of their resting state at the first visit, one day, and one week later. The experimental group participated in three fMRI sessions on the first day: a resting state before fear conditioning, a fear extinction session, and a resting state immediately after fear extinction. Furthermore, this group experienced scanning after one day and week. The fear-conditioning paradigm consisted of visual stimuli with a distinct rate of partial reinforcement by electric shock. During the extinction, we presented the same stimuli in another sequence without aversive pairing. In the control group, rsFC maps were statistically similar between sessions for the left and right amygdala. However, in the experimental group, the increased rsFC mainly of the left amygdala was observed after extinction, one day, and one week. The between-group comparison also demonstrated an increase in the left amygdala rsFC in the experimental group. Our results indicate that functional connections of the left amygdala influenced by fear learning may persist for several hours and days in the human brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.