The paper studies the effect of the RVI biocomposite material belonging to the group of osteoplastic biocomposite materials, the RV-2 immunomodulator – a synthetic dipeptide inducing an immunocorrective effect, and combinations of these drugs on the reparative histogenesis of bone tissue in femoral fractures in rats. It was found that the remodeling of the primary bone callus into the secondary one in the fracture of the studied animals was of a diverse nature. This process was the most pronounced in the group where the components were used in complex, i.e. the bone defect was filled with RVI during the surgery, as well as RV-2 was injected intramuscularly to rats at a dose of 10 mcg per 1 kg of live weight for five days, starting immediately after the surgery. Well-formed coarse-fibrous connective tissue callus was recorded in animals of this group. The connective tissue was stained more intensely which indicates a denser arrangement of fibers in the callus. Focal cartilage tissue spanning bone fragments was observed within the callus. At the periphery of the site the cartilaginous callus was subjected to endochondral ossification with replacement by coarse-fibrous trabeculae with elements of lamellar bone tissue having haversian canals in the center. The inter-girdle spaces were filled with elements of the myeloid bone marrow in the forming bone tissue. Markedly proliferated osteoblasts were visible in the cambial layer of the periosteum. The bone tissue ratio increased up to (60.21 ± 2.62)%, which significantly exceeded the same indicator in the control group and in all experimental groups. The low content of connective tissue and the high ratio of bone tissue indicated more active osteogenesis processes and reparative regeneration in comparison with other groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.