The scatter in laminar flame front speed caused by both an error in the composition of the combustible mixture and initial disturbances is reported. It's shown how the configuration of the initially planar front in laminar flame initial disturbances in a gas mixture of the same composition affects the scatter of speeds of expanding spherical flames. The experimental results previously obtained by the authors, demonstrating the scatter in the speed of the laminar flame front in an initially quiescent gas mixture of constant composition under the same conditions, are explained by integrating the Sivashinsky equation with various initial disturbances. The influence of combustible mixture composition errors on the parameters determining the speed of the flame front is analyzed. These parameters were recalculated for a possible scatter in the mixture composition, obtained based on data on the accuracy of the equipment used in previously published experiments.
The results of an experimental study of the effect of acoustic oscillations with a frequency of 250-7000 Hz and an intensity of 105 dB on the dynamics of the acceleration of a hydrogen-air flame in an open channel are presented. Dependences of the position of the flame front and cell sizes were obtained from shadow photographs at different frequencies of acoustic oscillations. The frequency values when the average flame speed increases up to 3 times are found. Acoustic action with a frequency of 250 Hz leads to a slight decrease in the speed of the flame.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.