An optical fiber with a high Kerr nonlinearity coefficient is proposed and produced from a bismuth-modified tellurite glass for creation of nonclassical multiphoton states of light. Specifically, we propose to use those fibers to squeeze the quantum fluctuations of one of the quadratures of light in the 20 W signal significantly below -10 dB compared to the standard quantum noise limit, which is important for various practical applications. Using numerical modeling based on stochastic nonlinear Schrodinger equation, we demonstrate noise squeezing stronger than -16 dB for lengths of tellurite fiber 6-14 m, while squeezing of -14 dB is expected in silica fibers for lengths of 120-300 m. Analytical formulas were used to analyse the physical factors which limit the squeezing achievable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.