Here we present a new approach to improve fixation of radionuclides on contaminated surfaces and eliminate their migration after nuclear accidents. The approach consists in fabrication of latex composite coatings, which combine properties of polymeric dust-suppressors preventing radionuclides migration with aerosols and selective inorganic sorbents blocking radionuclides leaching under contact with ground waters and atmospheric precipitates. Latex/cobalt hexacyanoferrate(II) (CoHCF) composites selective to cesium radionuclides were synthesized via "in situ" growth of CoHCF crystal on the surface of carboxylic or amino latexes using surface functional groups as ion-exchange centers for binding precursor ions Co(2+) and [Fe(CN)6](4-). Casting such composite dispersions with variable content of CoHCF on (137)Cs-contaminated sand has yielded protective coatings, which reduced cesium leaching to 0.4% compared to 70% leaching through original latex coatings. (137)Cs migration from the sand surface was efficiently minimized when the volume fraction of CoHCF in the composite film was as low as 0.46-1.7%.
Hafnium-doped titania (Hf/Ti = 0.01; 0.03; 0.05) had been facilely synthesized via a template sol–gel method on carbon fibre. Physico-chemical properties of the as-synthesized materials were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, scanning transmission electron microscopy, X-ray photoelectron spectroscopy, thermogravimetry analysis and Brunauer–Emmett–Teller measurements. It was confirmed that Hf4+ substitute in the Ti4+ sites, forming Ti1–xHfxO2 (x = 0.01; 0.03; 0.05) solid solutions with an anatase crystal structure. The Ti1–xHfxO2 materials are hollow microtubes (length of 10–100 µm, outer diameter of 1–5 µm) composed of nanoparticles (average size of 15–20 nm) with a surface area of 80–90 m2 g–1 and pore volume of 0.294–0.372 cm3 g–1. The effect of Hf ion incorporation on the electrochemical behaviour of anatase TiO2 in the Li-ion battery anode was investigated by galvanostatic charge/discharge and electrochemical impedance spectroscopy. It was established that Ti0.95Hf0.05O2 shows significantly higher reversibility (154.2 mAh g–1) after 35-fold cycling at a C/10 rate in comparison with undoped titania (55.9 mAh g–1). The better performance offered by Hf4+ substitution of the Ti4+ into anatase TiO2 mainly results from a more open crystal structure, which has been achieved via the difference in ionic radius values of Ti4+ (0.604 Å) and Hf4+ (0.71 Å). The obtained results are in good accord with those for anatase TiO2 doped with Zr4+ (0.72 Å), published earlier. Furthermore, improved electrical conductivity of Hf-doped anatase TiO2 materials owing to charge redistribution in the lattice and enhanced interfacial lithium storage owing to increased surface area directly depending on the Hf/Ti atomic ratio have a beneficial effect on electrochemical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.