All groups considered in this paper are assumed to be finite. The symbol denotes some nonempty set of primes, and is a subgroup functor in the sense of A.N. Skiba. We recall that a formation is a class of groups that is closed under taking homomorphic images and finite subdirect products. Functions of the form : ∪ { ′ } → {formations of groups} are called-local satellites (formation-functions). Such functions are used to study the structure of-saturated formations. The paper is devoted to studying the properties of the lattice of all closed functorially totally partially saturated formations related to the algebraicity concept for a lattice of formations. We prove that for each subgroup functor , the lattice ∞ of all-closed totally-saturated formations is algebraic. This generalizes the results by V.G. Safonov. In particular, we show that the lattice ∞ of all-closed totally-saturated formations is algebraic as well as the lattice ∞ of all-closed totally saturated formations. Similar results are obtained for lattices of functorially closed totally partially saturated formations corresponding to certain subgroup functors. Thus, we find new classes of algebraic lattices of formations of finite groups.
В работе рассматриваются только конечные группы. Изучаются свойства решетки всех функторов замкнутых частично тотально композиционных формаций. Доказано, что для любого подгруппового функтор τ решётка c τ ω∞ всех τ-замкнутых тотально ω-композиционных формаций является алгебраической. Кроме того, установлена индуктивность данной решётки. В качестве следствия основного результата установлены алгебраично сесть и индуктивность решеткиC τ p∞ всех τ- замкнутых тотально р-композиционных формаций, а также решетки c τ∞ всех τ-замкнутых тотально композиционных формаций.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.