Plasma flow in the poloidal limiter shadow of a tokamak is examined. It is shown that, as a result of contact with a limiter, a large poloidal electric field is created in the plasma. Plasma drift in this field can be considered as anomalous diffusion. The characteristic dimension of the change in plasma density is found to be of the order of the ion cyclotron radius calculated for a poloidal magnetic field. The plasma flow is non-ambipolar and the electric current closes its circuit via the limiter. The results obtained are confirmed by experiments on various tokamaks.
Abstract.To gain better understanding of auroral processes in Saturn's magnetosphere, we compare ultraviolet (UV) auroral images obtained by the Hubble Space Telescope (HST) with the position of the open-closed field line boundary in the ionosphere calculated using a magnetic field model that employs Cassini measurements of the interplanetary magnetic field (IMF) as input. Following earlier related studies of pre-orbit insertion data from January 2004 when Cassini was located ∼ 1300 Saturn radii away from the planet, here we investigate the interval 12-15 February 2008, when UV images of Saturn's southern dayside aurora were obtained by the HST while the Cassini spacecraft measured the IMF in the solar wind just upstream of the dayside bow shock. This configuration thus provides an opportunity, unique to date, to determine the IMF impinging on Saturn's magnetosphere during imaging observations, without the need to take account of extended and uncertain interplanetary propagation delays. The paraboloid model of Saturn's magnetosphere is then employed to calculate the magnetospheric magnetic field structure and ionospheric open-closed field line boundary for averaged IMF vectors that correspond, with appropriate response delays, to four HST images. We show that the IMF-dependent open field region calculated from the model agrees reasonably well with the area lying poleward of the UV emissions, thus supporting the view that the poleward boundary of Saturn's auroral oval in the dayside ionosphere lies adjacent to the open-closed field line boundary.
Abstract. We present case and statistical studies of flux transfer events (FTEs) observed by Interball-1 on the highlatitude magnetopause. The case studies provide observations of FTEs in the cusp during periods of southward interplanetary magnetic field (IMF) orientation and on the magnetopause poleward of the cusp during periods of strongly northward IMF orientation. We interpret the former in terms of reconnection on the equatorial magnetopause and subsequent antisunward motion of FTEs into the cusps. We interpret the latter in terms of bursty antiparallel merging on the high-latitude magnetopause. A statistical survey demonstrates that events observed equatorward of the cusp show a marked tendency to occur for antiparallel (northward) magnetospheric and (southward) magnetosheath magnetic field orientations, whereas events observed poleward of the cusps tend to occur for either strongly parallel or antiparallel configurations. We suggest that this discrepancy implies that events observed poleward of the cusps originate both locally and on the equatorial magnetopause. Finally, we use the sense of the bipolar signature and the prevailing magnetic field orientation to demonstrate that almost all events move antisunward, i.e. that at these latitudes pressure gradients determine the motion of FTEs and not magnetic curvature forces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.