This paper describes the study of the fatty acid (FA) composition of three fish species (roach, perch, and pike) from Lake Gusinoe (western Transbaikalia). Using principal component analysis, the fatty acid composition of the studied fish species was shown to be species specific. The muscle tissue of roach, perch, and pike was found to contain high levels of polyunsaturated fatty acids (PUFA), including essential docosahexaenoic (DHA), eicosapentaenoic (EPA), and arachidonic acids. Indicators of nutritional quality based on the fatty acid composition showed that the values of the hypocholesterolemic/hypercholesterolemic (HH) ratio indices were sufficiently high. The atherogenicity (AI) and thrombogenicity (TI) indices, which are indicators for the nutritional value, were less than 1 in the studied fish. In terms of flesh lipid quality (FLQ), pike and perch had the highest proportion of total EPA + DHA. According to the obtained data for the composition of fatty acids in the muscle tissue of the studied fish from Lake Gusinoe, the anthropogenic load exerted on Lake Gusinoe has not yet statistically significantly affected the fish muscle quality.
The increasing consumption of phthalates (PAEs), along with their high toxicity and high mobility, poses a threat to the environment. This study presents initial data on the contents of six priority PAEs in the water of lakes located on the eastern shore of Lake Baikal-Arangatui, Bormashevoe, Dukhovoe, Kotokel, and Shchuchye. The mean total concentrations of the six PAEs in lakes Arangatui and Bormashevoe (low anthropogenic load) were comparable to those in Kotokel (medium anthropogenic load, 17.34 µg/L) but were significantly higher (p < 0.05) than in Dukhovoe and Shchuchye (high anthropogenic load, 10.49 and 2.30 µg/L, respectively). DBP and DEHP were the main PAEs in all samples. The DEHP content in lakes Arangatui and Bormashevoe was quite high, and at some sampling sites it exceeded the MACs established by Russian, U.S. EPA, and WHO regulations. The assessment showed that there is no potential risk to humans associated with the presence of PAEs in drinking water. However, the levels of DEHP, DBP, and DnOP in the water pose a potential threat to sensitive aquatic organisms, as shown by the calculated risk quotients (RQs). It is assumed that the origin of the phthalates in the studied lakes is both anthropogenic and biogenic.
At present, the problem of climate change is becoming increasingly acute. This is especially pressing for Lake Baikal, a World Natural Heritage site. The Russian part of the Selenga watershed is a suitable site for climate change research. The study of changes in precipitation, runoff, and chemical runoff is important for sustainable water resources management. This study presents a trend analysis of precipitation and runoff at hydrological stations and weather stations in the Russian part of the Selenga River basin. A comparative analysis of the concentrations of major ions in the surface water of the Selenga River depending on water levels was also carried out. Analysis of the data series on precipitation revealed a slight negative trend at the Novoselenginsk, Ulan-Ude, and Kabansk stations, and a weak positive trend—at the Kyakhta station. Runoff analysis revealed negative trends at the two used stations (Novoselenginsk and Mostovoi). The hydrochemical regime of the Selenga River is characterized by an increase in major ions and salinity during winter low-water periods, and a decrease during high-water periods. Mineralization and major ion content are lower in the high-water period (2019–2021) than in the low-water period (2015–2017).
Small lakes have lower water levels during dry years as was the case in 2000–2020. We sought to show the biodiversity of plant communities at various water levels in Lake Arakhley. Changes in moisture content are reflected in the cyclical variations of the water level in the lake, which decreased approximately 2 m in 2017–2018. These variations affect the biological diversity of the aquatic ecosystems. We present the latest data on the state of the plant communities in this mesotrophic lake located in the drainage basin of Lake Baikal. Lake Arakhley is a freshwater lake with low mineral content and a sodium hydrocarbonate chemical composition. Changes in the nutrient concentration were related to precipitation; inflow volume and organic matter were autochtonous at low water levels. The most diverse groups of phytoplankton found in the lake were Bacillariophyta, Chlorophyta, and Chrysophyta. High biodiversity values indicate the complexity and richness of the lake’s phytoplankton community. A prevalence of Lindavia comta was observed when water levels were low and Asterionella formosa dominated in high-water years. The maximum growth depth of lacustrine vegetation decreased from 11.0 m to 4.0 m from 1967 to 2018. Decreasing water levels were accompanied by a reduction in the littoral zone, altering the communities of aquatic plants. The hydrophyte communities were monodominant in the dry years and were represented by Ceratophyllum demersum. The vegetation cover of the lake was more diverse in high-water years and variations in the lake’s water content altered the composition of biogenic substances. These changes were reflected in the lake’s phytocenosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.