Delamination of bimaterial composed of two structured materials is considered. A crack is located at the interface between two media. Under tension applied at infinity, I mode fracture is implemented. The improved Leonov-Panasyuk-Dugdale model (LPD model) is proposed to be applied in combination with the Neuber-Novozhilov approach. The case when elastic material characteristics are identical and strength ones essentially differ is analyzed in detail. Analytical description of plotting the fracture diagram of quasi-brittle bimaterial for the plane stress state is given. Numerical modeling of the plasticity zone in bimaterial under quasi-static loading has been performed. The updated Lagrange formulation of solid-state mechanics equations is used in a numerical model. This formulation is most preferable for modeling of bodies made from elasto-plastic material subjected to large strain. Using the finite element method, a plastic zone in the vicinity of a crack tip has been described. It is shown that the shape of the plastic zone in bimetal essentially differs from that in a homogenous medium. Numerical experiments are in good agreement with the proposed analytical model of the pre-fracture zone in the weakest material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.