In this study, for the first time we investigated the in situ upgrading performance of Na metal nanoparticles, which were obtained by dispersing small pieces of sodium in liquid paraffin up to certain dispersity. In situ aquathermolytic reactions were modeled in a high pressure–high temperature reactor coupled with a Gas Chromatography (GC) system at a temperature of 250 °C for 24 h using a heavy oil sample, produced from the Ashal’cha reservoir, Republic of Tatarstan (Russia). The mean particle size of Na nanoparticles was 6.5 nm determined by the Dynamic Light Scattering (DLS) method. The nanoparticles were introduced to the reaction medium with a concentration of 2 wt.% The upgrading performance of Na nanoparticles was evaluated by several analytical methods such as Gas Chromatography (GC), elemental analysis (CHNS), SARA, Gas Chromatography–Mass Spectroscopy (GC-MS), FT-IR spectroscopy and viscosity measurements. It was revealed that Na nanoparticles interact with water to yield hydrogen gas, the concentration of which increases from 0.015 to 0.805 wt.% Moreover, the viscosity of upgraded heavy oil was reduced by more than 50% and the content of low-molecular-weight hydrocarbons in saturated and aromatics fractions was increased. The Na nanoparticles contributed to the utilization of hydrogen sulfide and carbon dioxide by 99 and 94 wt.%, respectively.
Catalytic thermolysis is considered to be an effective process for viscosity reduction, the conversion of high-molecular components of oil (resins and asphaltenes) into light hydrocarbons, and the desulfurization of hydrocarbons. In this paper, we conducted non-catalytic and catalytic thermolysis of a heavy oil sample isolated from the Ashalcha oil field (Tatarstan, Russia) at a temperature of 250 °C. Fullerene C60 nanoparticles were applied to promote selective low-temperature thermolytic reactions in the heavy oil, which increase the depth of heavy oil upgrading and enhance the flow behavior of viscous crude oil. In addition, the influence of water content on the performance of heavy oil thermolysis was evaluated. It was found that water contributes to the cracking of high-molecular components such as resins and asphaltenes. The destruction products lead to the improvement of group and fractional components of crude oil. The results of the experiments showed that the content of asphaltenes after the aquatic thermolysis of the heavy oil sample in the presence of fullerene C60 was reduced by 35% in contrast to the initial crude oil sample. The destructive hydrogenation processes resulted in the irreversible viscosity reduction of the heavy oil sample from 3110 mPa.s to 2081 mPa.s measured at a temperature of 20 °C. Thus, the feasibility of using fullerene C60 as an additive in order to increase the yield of light fractions and reduce viscosity is confirmed.
An attempt to combine two ‘green’ compounds in nanocomposite microcontainers in order to increase protection properties of waterborne acryl-styrene copolymer (ASC) coatings has been made.
N
-lauroylsarcosine (NLS) served as a corrosion inhibitor, and linseed oil (LO) as a carrier-forming component. LO is compatible with this copolymer and can impart to the coating self-healing properties. For the evaluation of the protective performance, three types of coatings were compared. In the first two, NLS was introduced in the coating formulation in the forms of free powder and micro-containers filled with LO, correspondingly. The last one was a standard ASC coating without inhibitor at all. Low-carbon steel substrates were coated by these formulations by spraying and subjected subsequently to the neutral salt spray test according to DIN ISO 9227. Results of these tests as well as the data obtained by electrochemical study suggest that such containers can be used for the improvement of adhesion of ASC-based coatings to the substrate and for the enhancement of their protective performance upon integrity damage, whereas the barrier properties of intact coatings were decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.