The problem of reinforcing the mirror surfaces of space-based astronomical optics and their protection against external factors is discussed. To solve this problem, the possibility of the deposition of diamond-like coatings onto them is considered. Using mirrors with Al and Cu coatings as an example, it has been experimentally demonstrated that the pulsed laser deposition of a carbon layer with a thickness of 30 nm onto them leads to an increase in the surface hardness by 25 and 100%, respectively. It has been established that the reinforcing coating has no effect on the shape deviations of mirrors and decrease their surface roughness. In this case, the reflection factor appreciably decreases in the visible region (400–780 nm), whereas its decrease in the infrared region (above 780 nm) is no more than 5%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.