The development of hyperspectral remote sensing equipment, in recent years, has provided plant protection professionals with a new mechanism for assessing the phytosanitary state of crops. Semantically rich data coming from hyperspectral sensors are a prerequisite for the timely and rational implementation of plant protection measures. This review presents modern advances in early plant disease detection based on hyperspectral remote sensing. The review identifies current gaps in the methodologies of experiments. A further direction for experimental methodological development is indicated. A comparative study of the existing results is performed and a systematic table of different plants’ disease detection by hyperspectral remote sensing is presented, including important wave bands and sensor model information.
This paper presents the results of long‐term monitoring of insecticide resistance in populations of agricultural pests in Russia. Over the last 45 years, resistance developments were recorded for 36 arthropod pest species in 11 agricultural crops and pastures in relation to nearly all commonly used plant protection products. Development of group, cross and multiple resistance has been revealed in populations of many economically important pests. Toxicological and phenotypical (for Colorado potato beetle) methods have been devised to monitor the development of pesticide resistance. Based on experience over the last century, systems aimed at preventing the development of pest resistance to insecticides and acaricides are elaborated. These systems are based on resistance monitoring and using plant protection measures which minimize the toxic pressure on agroecosystems.
It is shown that millet crops in growing regions are infested with a wide range of dicotyledonous weed species in various combinations. The biologically most acceptable herbicides of the available set regis tered for the crop are Elant EC, Magnum WG, and Dicopur Top SL. Improvement of the assortment assumes the use of combined herbicides with a broadened spectrum of active ingredients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.