Several human diseases in Europe are caused by viruses transmitted by tick bite. These viruses belong to the genus Flavivirus, and include tick-borne encephalitis virus, Omsk haemorrhagic fever virus, louping ill virus, Powassan virus, Nairovirus (Crimean-Congo haemorrhagic fever virus) and Coltivirus (Eyach virus). All of these viruses cause more or less severe neurological diseases, and some are also responsible for haemorrhagic fever. The epidemiology, clinical picture and methods for diagnosis are detailed in this review. Most of these viral pathogens are classified as Biosafety Level 3 or 4 agents, and therefore some of them have been classified in Categories A-C of potential bioterrorism agents by the Centers for Disease Control and Prevention. Their ability to cause severe disease in man means that these viruses, as well as any clinical samples suspected of containing them, must be handled with specific and stringent precautions.
A panel of deoxyoligonucleotide probes for studying the genetic variability and genotyping of Tick-borne encephalitis virus (TBEV) strains by molecular hybridization of nucleic acids (MHNA) was created. This panel allows to estimate the genetic structure of individual TBEV strains, as the targets for probes are both variable and genotype (subtype)-specific sequences of all TBEV genes. With the help of this panel using the method of molecular hybridization of nucleic acids 268 archived TBEV isolates were investigated and the distribution of its genotypes and subgenotypes of genotype 3 was made more precise in the territory of Eurasia. The conclusion made earlier has confirmed that five genotypes of TBEV co-circulate in Eastern Siberia. It is generally recognized that the Far Eastern (TBE-FE), European (TBE-Eu), and Siberian (TBE-Sib) genotypes are widespread and epidemiologically important. The fourth genotype is presented by only one isolate, TBE178-79, originated from Irkutsk region, Russia. The fifth genotype includes 10 isolates, 1 of them, TBE886-84, was found earlier and recognized as unique [Zlobin et al. (2001b): Vopr Virusol 1:12-16 (Russian)].
Background. During the study of the genetic variability of the tick-borne encephalitis virus (TBEV) in Eastern Siberia, a group of 22 strains with a unique genetic structure significantly different from all known TBEV subtypes was identified. This TBEV variant was tentatively called “group 886”. Therefore, for this original TBEV variant it was necessary to study the genetic, biological properties of the “group 886” strains, clarify its TBEV taxonomic status, its range, evolutionary history, etc.Aim. The generalization of the currently available data on genetic and biological properties of TBEV “886” group.Materials and methods. The genetic structure of “group 886” strains was studied by the complex of molecular-genetic methods (MHNA, sequencing of fragments or the complete genome).Results. It was shown that “group 886” strains form a separate cluster on phylogenetic tree, and the level of genetic differences from other genotypes is more than 12 %. It was defined that this TBEV variant has its own area (Irkutsk region, Republic of Buryatia, Trans-Baikal region, Northern Mongolia). Its ecological connection with all links of the transmissive chain (ixodid ticks, small mammals, human), participation in human pathology, stability and duration of circulation in the Baikal region, individual evolutionary history were proved. Some phenotypic characteristics of the “group 886” strains were considered.Conclusion. The presented data testify to the validity of the “886 group” isolation as an independent genetic type. Taking into account the geographical distribution of this TBEV genotype, we propose to assign it the name “Baikal genotype/subtype”.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.