The development of multi-rotor helicopter concepts, driven by the active introduction of brushless electric motors, leads to the necessity of assessing the multi-rotor scheme main advantages implementing possibility and determining the rational areas of its application. The article analyzes the concept of a multi-rotor platform with a distributed power plant. Parametric study of characteristics depending on the number of rotors for a line of multi-propeller aircraft with take-off weight from 0.5 to 120 tons was carried out. Evaluation of weight and dimensional characteristics of blades, main rotor heads, gear boxes, as well as power wires of electric motors and structure beams connecting the elements of the distributed power plant is obtained. Evaluation of drag and thrust losses on blowing, as well as power requirements for typical flight modes was carried out. Estimation of the required number of rotors for the implementation of the gearless condition and flight safety with one engine failed are obtained. Rational areas of multi-rotor scheme application are defined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.