An atrial tachyarrhythmias is predominantly triggered by a proarrhythmic activity originate from the pulmonary veins (PV) myocardial sleeves; sympathetic or adrenergic stimulation facilitates PV proarrhythmia. In the present study the electrophysiological inhomogeneity, spatiotemporal characteristics of the adrenergically induced ectopic firing and sympathetic nerves distribution have been investigated in a murine PV myocardium to clarify mechanisms of adrenergic PV ectopy. Electrically paced murine PV demonstrate atrial-like pattern of conduction and atrial-like action potentials (AP) with longest duration in the mouth of PV. The application of norepinephrine (NE), agonists of α-and β-adrenergic receptors (ARs) or intracardiac nerves stimulation induced spontaneous AP in a form of periodical bursts or continuous firing. NE-or ARs agonists-induced SAP originated from unifocal ectopic foci with predominant localization in the region surrounding PV mouth, but not in the distal portions of a murine PV myocardium. A higher level of catecholamine content and catecholamine fiber network density was revealed in the PV myocardial sleeves relative to LA appendage. However, no significant local variation of catecholamine content and fiber density was observed in the murine PV. In conclusion, PV mouth region appear to be a most susceptible to adrenergic proarrhythmia in mice. Intrinsic spatial heterogeneity of AP duration can be considered as a factor influencing localization of the ectopic foci in PV.
The developmental changes of the caval (SVC) and pulmonary vein (PV) myocardium electrophysiology are traced throughout postnatal ontogenesis.r The myocardium in SVC as well as in PV demonstrate age-dependent differences in the ability to maintain resting membrane potential, to manifest automaticity in a form of ectopic action potentials in basal condition and in responses to the adrenergic stimulation.r Electrophysiological characteristics of two distinct types of thoracic vein myocardium change in an opposite manner during early postnatal ontogenesis with increased proarrhythmicity of pulmonary and decreased automaticity in caval veins.r Predisposition of PV cardiac tissue to proarrhythmycity develops during ontogenesis in time correlation with the establishment of sympathetic innervation of the tissue.r The electrophysiological properties of caval vein cardiac tissue shift from a pacemaker-like phenotype to atrial phenotype in accompaniment with sympathetic nerve growth and adrenergic receptor expression changes.
Extracellular ATP and nicotinamide adenine dinucleotide (β-NAD) demonstrate properties of neurotransmitters and neuromodulators in peripheral and central nervous system. It has been shown previously that ATP and β-NAD affect cardiac functioning in adult mammals. Nevertheless, the modulation of cardiac activity by purine compounds in the early postnatal development is still not elucidated. Also, the potential influence of ATP and β-NAD on cholinergic neurotransmission in the heart has not been investigated previously. Age-dependence of electrophysiological effects produced by extracellular ATP and β-NAD was studied in the rat myocardium using sharp microelectrode technique. ATP and β-NAD could affect ventricular and supraventricular myocardium independent from autonomic influences. Both purines induced reduction of action potentials (APs) duration in tissue preparations of atrial, ventricular myocardium, and myocardial sleeves of pulmonary veins from early postnatal rats similarly to myocardium of adult animals. Both purine compounds demonstrated weak age-dependence of the effect. We have estimated the ability of ATP and β-NAD to alter cholinergic effects in the heart. Both purines suppressed inhibitory effects produced by stimulation of intracardiac parasympathetic nerve in right atria from adult animals, but not in preparations from neonates. Also, ATP and β-NAD suppressed rest and evoked release of acetylcholine (ACh) in adult animals. β-NAD suppressed effects of parasympathetic stimulation and ACh release stronger than ATP. In conclusion, ATP and β-NAD control the heart at the postsynaptic and presynaptic levels via affecting the cardiac myocytes APs and ACh release. Postsynaptic and presynaptic effects of purines may be antagonistic and the latter demonstrates agedependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.