It is possible to use laser reshaping technique for preparation of stable cartilage implants. Nonlinear thermomechanical behavior of cartilage is experimentally revealed. The influence of irradiation sequence on curvature radius of cartilage grafts is established for the first time.
In the context of the development of emerging laser-assisted thermo-mechanical technologies for non-destructive reshaping of avascular collagenous tissues (cartilages and cornea), we report the first application of phase-sensitive optical coherence tomography (OCT) for visualizing transient strains involving supra-wavelength inter-frame displacements of scatterers. Usually phase-sensitive OCT assumes the visualization of sub-pixel and even sub-wavelength displacements of scatterers and fairly small strains (say, <10−3), which conventionally implies the necessity of averaging for enhancing the effective signal-to-noise ratio and, correspondingly, the application of small-amplitude actuators producing periodic deformations. The original approach used here allows for direct estimation of elevated strains ~10−2 (close to onset of intense speckle blinking) obviating the necessity of averaging and phase unwrapping for supra-wavelength inter-frame displacements. We demonstrate the possibility of mapping aperiodic thermally-induced transient strains with resultant large deformations on order of tens per cent. Such strains are typical in laser tissue reshaping, but are far beyond the range of conventionally discussed OCT-based strain mapping.
Summary
Regenerative medicine opens new opportunities in the repair of cicatricial lesions of the vocal folds. Here, we present a thorough morphological study, with the focus on the collagen structures in the mucosa of the vocal folds, dedicated to the effects of stem cells on the vocal folds repair after cicatricial lesions. We used a conventional experimental model of a mature scar of the rabbit vocal folds, which was surgically excised with a simultaneous implantation of autologous bone marrow‐derived mesenchymal stem cells (MSC) into the defect. The restoration of the vocal folds was studied 3 months postimplantation of stem cells and 6 months after the first surgery. The collagen structure assessment included histology, immunohistochemistry and atomic force microscopy (AFM) studies. According to the data of optical microscopy and AFM, as well as to immunohistochemical analysis, MSC implantation into the vocal fold defect leads not only to the general reduction of scarring, normal ratio of collagens type I and type III, but also to a more complete restoration of architecture and ultrastructure of collagen fibres in the mucosa, as compared to the control. The collagen structures in the scar tissue in the vocal folds with implanted MSC are more similar to those in the normal mucosa of the vocal folds than to those of the untreated scars. AFM has proven to be an instrumental technique in the assessment of the ultrastructure restoration in such studies.
Lay Description
Regenerative medicine opens new opportunities in the repair of the vocal fold scars. Because collagen is a main component in the vocal fold mucosa responsible for the scar formation and repair, we focus on the collagen structures in the mucosa of the vocal folds, using a thorough morphological study based on histology and atomic force microscopy (AFM). Atomic force microscopy is a scanning microscopic technique which allows revealing the internal structure of a tissue with a resolution up to nanometres. We used a conventional experimental model of a mature scar of the rabbit vocal folds, surgically excised and treated with a mesenchymal stem cells transplant. Our morphological study, primarily AFM, explicitly shows that the collagen structures in the scarred vocal folds almost completely restore after the stem cell treatment. Thus, the modern microscopic methods, and especially AFM are instrumental tools for monitoring the repair of the vocal folds scars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.