The possibilities of organizing a repetitively pulsed process with given frequency characteristics in a cavity of constant volume with an external energy supply to the working gas mixture are considered. Modelling of gas-dynamic and thermal processes is carried out using the numerical solution of the conjugate heat transfer problem. The gas medium is described on the basis of a viscous compressible gas model. To find the temperature field in the walls of the structure, the equation of non-stationary heat conduction is solved. The conjugation of temperature fields in a gas and a solid is carried out using an iterative procedure. In the calculations, the geometrical parameters of the cavity, the density of the energy supply, the initial pressure, and the composition of the working mixture are varied. The results of calculations obtained in the framework of the one-dimensional and two-dimensional formulation of the problem under the action of both a single pulse and a series of pulses are compared. The results obtained demonstrate the possibility of implementing the required frequency characteristics of the process for given geometric and energy parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.