Abstract. This paper presents state-of-the-art spectral energy distributions (SEDs) of four Herbig Ae stars, based in part on new data in the mid and far-infrared and at millimeter wavelengths. The SEDs are discussed in the context of circumstellar disk models. We show that models of irradiated disks provide a good fit to the observations over the whole range of wavelengths. We offer a possible solution to the long-standing puzzle caused by the excess emission of Herbig Ae stars, where a large fraction of the stellar luminosity is re-radiated between ∼1.25 and 7 µm, with a peak at about 3 µm. We suggest that this general behaviour can be caused by dust evaporation in disks where the gas component is optically thin to the stellar radiation, as expected if the accretion rate is very low. The creation of a puffed-up inner wall of optically thick dust at the dust sublimation radius can account for the near-infrared characteristics of the SEDs. It can also naturally explain the H and K band interferometric observations of AB Aur (Millan-Gabet et al. 2001), which reveal a ring of emission of radius ∼0.3 AU. Finally, irradiated disk models can easily explain the observed intensity of the 10 µm silicate features and their variation from star to star.
Context. Circumstellar disks and outflows play a fundamental role in star formation. Infrared spectro-interferometry allows the inner accretion-ejection region to be resolved. Aims. We study the disk and Brγ-emitting region of MWC 297 with high spatial and spectral resolution and compare our observations with disk-wind models. Methods. We measured interferometric visibilities, wavelength-differential phases, and closure phases of MWC 297 with a spectral resolution of 12 000. To interpret our MWC 297 observations, we employed disk-wind models. Results. The measured continuum visibilities confirm previous results that the continuum-emitting region of MWC 297 is remarkably compact. We derive a continuum ring-fit radius of ∼2.2 mas (∼0.56 AU at a distance of 250 pc), which is ∼5.4 times smaller than the 3 AU dust sublimation radius expected for silicate grains (in the absence of radiation-shielding material). The strongly wavelengthdependent and asymmetric Brγ-emitting region is more extended (∼2.7 times) than the continuum-emitting region. At the center of the Brγ line, we derive a Gaussian fit radius of ∼6.3 mas HWHM (∼1.6 AU). To interpret the observations, we employ a magnetocentrifugally driven disk-wind model consisting of an accretion disk, which emits the observed continuum radiation, and a disk wind, which emits the Brγ line. The calculated wavelength-dependent model intensity distributions and Brγ line profiles are compared with the observations (i.e., K-band spectrum, visibilities, differential phases, and closure phases). The closest fitting model predicts a continuum-emitting disk with an inner radius of ∼0.3 AU and a disk wind ejection region with an inner radius of ∼0.5 AU (∼17.5 stellar radii). We obtain a disk-wind half-opening angle (the angle between the rotation axis and the innermost streamline of the disk wind) of ∼80 • , which is larger than in T Tau models, and a disk inclination angle of ∼20 • (i.e., almost pole-on). Conclusions. Our observations with a spectral resolution of 12 000 allow us to study the AU-scale environment of MWC 297 in ∼10 different spectral channels across the Brγ emission line. We show that the K-band flux, visibilities, and remarkably strong phases can be explained by the employed magneto-centrifugally driven disk wind model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.