The article considers 46 low-boiling working media (LBWM) with zero potential for ozone layer destruction. Out of them, 14 ones are single-component hydrofluorocarbon refrigerants, 28 ones are multi-component mixtures of hydrofluorocarbon refrigerants, and the four ones are native refrigerants. Thermodynamic analysis of working media based on the classical turbo-expander scheme with a heat exchanger designed to cool the superheated LBWM that has left the turbo-expander has been performed. For this scheme, a cycle is constructed in T–s-coordinates. The LBWM was compared using the exergetic coefficient of efficiency (KE). In the course of the study, it was found that for some LBWM, the sequence of location of the exergetic efficiencydependences on temperature at thermodynamically optimal working medium pressures is preserved over the entire temperature range under study (from 100 to 300 оC). In other words,if the working medium has the highest exergetic efficiency coefficient, then this property is inherent in it at any temperature in a given interval. It is proposed to perform the analysis of the LBWM for exergetic efficiency at an arbitrarily selected temperature (250 оC). The study demonstrated that the highest exergetic efficiency of natural refrigerants is R600A (50.25 %), among single component hydrofluorocarbon refrigerants – R245FA (50.00 %), R1233ZD(E) (49.91 %), R236EA (49.59 %), among multi-component mixtures of hydrofluorocarbon refrigerants – R429A (47.92 %), R430A (47.49 %) and R423A (47.47 %). Out of the all examined refrigerants, the following ones have the highest exergetic efficiency of all the considered LBWM: R600A, R245FA, R1233ZD(E), R236EA, R1234ZE(Z), R236FA. They belong to both natural refrigerants (hydrocarbons) and single-component hydrofluorocarbons. It should be noted that each of these working media has its drawbacks: some have a high potential for global warming, others are explosive, and others have a high cost.
The paper presents a thermodynamic analysis of secondary overheating in turbo-expander plants on low-boiling working fluids. The possibility of optimizing the parameters of the working fluid in a secondary stem superheater has been studied. The research was carried out for two typical turbo-expander cycles: with a heat exchanger at the outlet of the turbo-expander, intended for cooling an overheated low-boiling working fluid, and without a heat exchanger. Cycles in T–s coordinates were constructed for the studied schemes. The influence of pressure and temperature in the intermediate superheater on the exergetic efficiency of the turbo-expander unit was studied. Thus, the dependences of the exergetic efficiency and losses on the elements of the turbo-expander cycle are obtained when the temperature of the working fluid changes and pressure of the working fluid not changes in the intermediate superheater, and when the pressure changes and the temperature does not change. As a low-boiling working fluid, the ozone-safe freon R236EA is considered, which has a “dry” saturation line characteristic, zero ozone layer destruction potential, and a global warming potential equal to 1370. It has been determined that increasing the parameters of the low-boiling working fluid in front of the low-pressure turbo expander (regardless of the scheme of the turbo expander cycle) does not always cause an increase in the exergetic efficiency. Thus, overheating of the working fluid at a pressure exceeding the critical pressure causes a positive exergetic effect, but for each temperature there is an optimal pressure at which the efficiency will be maximum. At a pressure below the critical pressure, overheating leads to a decrease in the exergetic efficiency, and the maximum exergetic effect is achieved in the absence of a secondary steam superheater. All other things being equal, a turbo-expander cycle with a heat exchanger is more efficient than without it over the entire temperature range and pressure of the low-boiling working fluid under study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.