Currently used pharmaceutical nanocarriers, such as liposomes, micelles, nanoemulsions, polymeric nanoparticles and many others demonstrate a broad variety of useful properties, such as longevity in the blood allowing for their accumulation in pathological areas with compromised vasculature; specific targeting to certain disease sites due to various targeting ligands attached to the surface of the nanocarriers; enhanced intracellular penetration with the help of surface-attahced cell-penetrating molecules; contrast properties due to the carrier loading with various contrast materials allowing for direct carrier visualization in vivo; stimuli-sensitivity allowing for drug release from the carriers under certain physiological conditions, and others. Some of those pharmaceutical carriers have already made their way into clinic, while others are still under preclinical development. What could be seen much more rare, however, are the pharmaceutical nanocarriers combining several from the listed abilities. Long-circulating immunoliposomes capable of prolonged residence in the blood and specific target recognition represent one of few examples of this kind. At the same time, the enginnering of multifunctional pharmaceutical nanocarriers combinig several useful preoperties in one particle can significantly enhance the efficacy of many therapeutic and diagnostic protocols. This paper considers current status and possible future directions in the emerging area of multifunctional nanocarriers with primary attention on the combination of such properties as longevity, targetability, intracellular penetration and contrast loading.
Here we describe a robust, microfluidic technique to generate and analyze 3D tumor spheroids, which resembles tumor microenvironment and can be used as a more effective preclinical drug testing and screening model. Monodisperse cell-laden alginate droplets were generated in Polydimethylsiloxane (PDMS) microfluidic devices that combine T-junction droplet generation and external gelation for spheroid formation. The proposed approach has the capability to incorporate multiple cell types. For the purposes of our study, we generated spheroids with breast cancer cell lines (MCF-7 drug sensitive and resistant) and co-culture spheroids of MCF-7 together with a fibroblast cell line (HS-5). The device has the capability to house 1000 spheroids on chip for drug screening and other functional analysis. Cellular viability of spheroids in the array part of the device was maintained for two weeks by continuous perfusion of complete media into the device. The functional performance of our 3D tumor models and a dose dependent response of standard chemotherapeutic drug, Doxorubicin (Dox) and standard drug combination Dox and Paclitaxel (PCT) was analyzed on our chip-based platform. Altogether, our work provides a simple and novel, in vitro platform to generate, image and analyze uniform, 3D monodisperse Alginate hydrogel tumors for various Omic studies and therapeutic efficiency screening, an important translational step before in vivo studies.
Targeting cell motility, which is required for dissemination and metastasis, has therapeutic potential for ovarian cancer metastasis, and regulatory mechanisms of cell motility need to be uncovered for developing novel therapeutics. Invasive ovarian cancer cells spontaneously formed protrusions, such as lamellipodia, which are required for generating locomotive force in cell motility. siRNA screening identified class II phosphatidylinositol 3-kinase C2β (PI3KC2β) as the predominant isoform of PI3K involved in lamellipodia formation of ovarian cancer cells. The bioactive sphingolipid ceramide has emerged as an antitumorigenic lipid, and treatment with short-chain C6-ceramide decreased the number of ovarian cancer cells with PI3KC2β-driven lamellipodia. Pharmacological analysis demonstrated that long-chain ceramide regenerated from C6-ceramide through the salvage/recycling pathway, at least in part, mediated the action of C6-ceramide. Mechanistically, ceramide was revealed to interact with the PIK-catalytic domain of PI3KC2β and affect its compartmentalization, thereby suppressing PI3KC2β activation and its driven cell motility. Ceramide treatment also suppressed cell motility promoted by epithelial growth factor, which is a prometastatic factor. To examine the role of ceramide in ovarian cancer metastasis, ceramide liposomes were employed and confirmed to suppress cell motility in vitro. Ceramide liposomes had an inhibitory effect on peritoneal metastasis in a murine xenograft model of human ovarian cancer. Metastasis of PI3KC2β knocked-down cells was insensitive to treatment with ceramide liposomes, suggesting specific involvement of ceramide interaction with PI3KC2β in metastasis suppression. Our study identified ceramide as a bioactive lipid that limits PI3KC2β-governed cell motility, and ceramide is proposed to serve as a metastasis-suppressor lipid in ovarian cancer. These findings could be translated into developing ceramide-based therapy for metastatic diseases.
Advances in drug delivery technologies have introduced numerous formulations and devices for improving drug efficacy and patient compliance. Such advances occurred as a result of contributions from scientists with diverse backgrounds and research interests. A wide range of drugdelivery products including oral, transdermal, and injectable depot formulations, among others, have entered the market and have helped millions of patients. The impact created by these diverse products has further fueled R&D on numerous aspects of drug delivery in academia and industry. Research and review articles in the Journal of Controlled Release (JCR) have represented this diversity quite well since its launch in 1984. Over the last decade, we, the editors of the JCR have noticed a clear shift from this diverse historical base to a strong focus on nanotechnology-based research. We would like to take this opportunity to reflect on the current trends in drug delivery research and provide guidelines for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.