In this article, we investigate the effect of hydrocarbon addition on the rheological properties and structure of wormlike micellar solutions of potassium oleate. We show that a viscoelastic solution of entangled micellar chains is extremely responsive to hydrocarbons-the addition of only 0.5 wt % n-dodecane results in a drastic drop in viscosity by up to 5 orders of magnitude, which is due to the complete disruption of micelles and the formation of microemulsion droplets. We study the whole range of the transition of wormlike micelles into microemulsion droplets and discover that it can be divided into three regions: (i) in the first region, the solutions retain a high viscosity (∼10-350 Pa·s), the micelles are entangled but their length is reduced by the solubilization of hydrocarbons; (ii) in the second region, the system transitions to the unentangled regime and the viscosity sharply decreases as a result of further micelle shortening and the appearance of microemulsion droplets; (iii) in the third region, the viscosity is low (∼0.001 Pa·s) and only microemulsion droplets remain in the solution. The experimental studies were accompanied by theoretical considerations, which allowed us to reveal for the first time that (i) one of the leading mechanisms of micelle shortening is the preferential accumulation of the solubilized hydrocarbon in the spherical end caps of wormlike micelles, which makes the end caps thermodynamically more favorable; (ii) the onset of the sharp drop in viscosity is correlated with the crossover from the entangled to unentangled regime of the wormlike micellar solution taking place upon the shortening of micellar chains; and (iii) in the unentangled regime short cylindrical micelles coexist with microemulsion droplets.
Novel viscoelastic smart suspensions based on cationic wormlike micelles (WLMs) of erucylbis(hydroxyethyl)methylammonium chloride and oppositely charged submicron magnetite particles in the presence of added low molecular weight salt were prepared and investigated. The suspensions demonstrate remarkable stability against sedimentation, which can be due to the incorporation of particles into the network of entangled WLMs by linking to energetically unfavorable micellar end-caps. Added particles enhance significantly the viscosity, the plateau modulus, and the relaxation time of the system, acting as additional multifunctional physical cross-links in the micellar network. The increase of plateau modulus stops when the concentration of particles reaches ca. 1.5 wt %, indicating that all micellar end-caps available in the system are linked to the particles. Further addition of particles may lead just to the redistribution of micellar ends between the particles without creation of new elastically active chains. The increase of rheological characteristics by added particles is more pronounced in suspensions with a smaller content of low molecular weight salt KCl when the WLMs are shorter in length and therefore contain a larger amount of end-caps responsible for the interaction with the particles. Magnetite particles not only enhance the rheological characteristics but also impart magnetoresponsive properties to the suspension. Upon application of magnetic field, the liquidlike system transforms into a solidlike one, demonstrating a constant value of storage modulus in all frequency range and the appearance of yield stress, which is due to the formation of field-aligned chainlike aggregates of particles opposing the flow. A combination of responsive properties inherent to both the matrix and the particles makes these smart fluids very competitive with other magnetic soft matter materials for various applications.
Rheological studies were performed with aqueous salt solutions of anionic surfactant potassium oleate and its mixtures with hydrophobically modified polyacrylamide. Semidilute solutions of the surfactant in the presence of salt (KCl) demonstrate viscoelastic properties due to the formation of a transient network of entangled wormlike micelles. These systems are highly responsive to hydrocarbons: the addition of n-heptane or n-dodecane reduces the viscosity of solutions by up to 4 to 5 orders of magnitude, thus inducing the transition of a gellike system to a fluid one. It is the transformation of cylindrical surfactant micelles into spherical ones upon absorption of hydrocarbon that disrupts the network. The addition of a small amount (0.5 wt %) of associating polymer leads to up to a 5000-fold increase in the zero-shear viscosity and enhances the susceptibility to hydrocarbons. SANS data show that independently of the presence of polymer the radius of wormlike micelles is roughly equal to the length of a surfactant molecule, whereas the radius of spheres formed upon the absorption of hydrocarbon is 2-2.5-fold higher. A possible structure of the spherical micelles is discussed.
Magnetorheological elastomers (MRE) have been synthesized on the basis of a silicon compound and a mixture of carbonyl iron particles of sizes 3–5 and 40–80 μm. Their viscoelastic properties have been studied by dynamic shear oscillations of various amplitudes on a stress controlled rheometer. The magnetic response of the obtained materials has been examined in a magnetic field applied perpendicular to the shear plane. It has been shown that under applied magnetic field both the storage G′ and loss G″ moduli became strain‐dependent. The values of G′ and G″ decrease with strain, while their ratio (the loss factor), G″/G′, growths with strain. The higher magnetic field is the more pronounced the strain dependence is. At small strain (up to 1%) MRE demonstrate a giant (more than 10 times) increase of the moduli. Some features of hysteretic behavior of MRE under simultaneously applied magnetic field and external mechanical force have been elucidated. Temperature has a negligible effect on viscoelastic properties and stability of the developed MRE. A damper on the basis of MRE has been designed and its properties have been examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.