The problem of optical image deformations caused by the phenomenon of light beam diffraction in uniaxial crystals by ultrasonic waves is considered in the paper. A general analytical expression is derived describing a dependence of spatial deformations and transmission coefficients on incidence angles as well as on parameters of the crystal and the ultrasound. The most interesting wide-angle diffraction configurations are analyzed, and all types of spatial distortions and transfer functions are described.
Image aberrations caused by acousto-optic (AO) anisotropic diffraction in uniaxial crystals are discussed. For their analysis, we propose a simplified ray-tracing model of an AO crystal cell (AOC). With this approach, one can assign any configuration of AO interaction, any material and geometry of the crystal, and then estimate all conventional ray aberrations, such as spherical, coma, astigmatism, distortion, etc. The optimization procedure is demonstrated by the aberration analysis of three principal spectral imaging schemes based on AO tunable filters (AOTFs). The approach developed promises performance improvement of AOTF-based systems for high-quality spectral imaging and image processing.
Spatiospectral structure of wave phase matching in birefringent crystals has a strong dependence on the geometry of the acousto-optic interaction and incident light spectrum. This dependence defines details of light beam profile transformation. It is especially important for imaging applications related to a large angular aperture and a wide spectral bandwidth of the incident light. In this paper, we demonstrate accurate three-dimensional plotting of a light transmission pattern without small birefringence approximation. The rather complicated shape of the phase-matching locus in the spatiospectral domain inevitably leads to residual spatially nonuniform chromatic aberrations in the spectral image. Theoretical consideration and computational modeling are confirmed by the experiments on Bragg diffraction in paratellurite crystal. The results are especially important for the development of acousto-optical imaging devices and laser beam shaping technologies.
The problem of in vivo photoluminescence diagnostics of the tissues accessible by endoscopes is discussed. The spectral imaging module attachable to conventional rigid and°exible medical endoscopes is developed and described. It is based on a double acousto-optical tunable¯lter (AOTF) and a specialized optical coupling system. The module provides wide¯eld of view (FOV), absence of image distortions, random spectral access, fast spectral image acquisition at any wavelength in the visible range and accurate measurement of re°ectance spectrum in each pixel of the image. Images of typical biomedical samples are presented and discussed. Their spectra are compared to the reference data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.