Currently, along with growth in industrial production, the requirements for product quality testing are also increasing. In the tasks of defectoscopy and defectometry of multilayer materials, the use of thermal nondestructive testing method is promising. At the same time, interpretation of thermal testing data is complicated by a number of factors, which makes the use of traditional methods of data processing ineffective. Therefore, an urgent task is to search for new methods of thermal testing that will automate the diagnostic process and increase information content of obtained results. The purpose of article is to use the advances in deep learning for processing results of active thermal testing of products made of multilayer materials and development of an automated system for thermal defectoscopy and defectometry of such products. The proposed system consists of a heating source, an infrared camera for recording sequences of thermograms and a digital information processing unit. Three neural network modules are used for automated data processing, each of which performs one of the tasks: defects detection and classification, determination of the defect depth and thickness. The software algorithms and user interface for interacting with system are programmed in the NI LabVIEW development environment.Experimental studies on samples made of multilayer fiberglass have shown a significant advantage of the developed system over using traditional methods for analyzing thermal testing data. The defect classification (determining the type) error on the test dataset was 15.7 %. Developed system ensured determination of defect depth with a relative error of 3.2 %, as well as the defect thickness with a relative error of 3.5 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.