Introduction. Postoperative atrial fibrillation (POAF) is one of the most common complications of coronary artery bypass grafting (CABG) and occurs in 25–65% of patients.Aim. The study aimed to assess the predictive potential of preoperative risk factors for POAF in patients with coronary artery disease (CAD) after CABG based on machine learning (ML) methods.Material and Methods. An observational retrospective study was carried out based on data from 866 electronic case histories of CAD patients with a median age of 63 years and a 95% confidence interval [63; 64], who underwent isolated CABG on cardiopulmonary bypass. Patients were assigned to two groups: group 1 comprised 147 (18%) patients with newly registered atrial fibrillation (AF) paroxysms; group 2 included 648 (81.3%) patients without cardiac arrhythmia. The preoperative clinical and functional status was assessed using 100 factors. We used statistical analysis methods (Chi-square, Fisher, Mann – Whitney, and univariate logistic regression (LR) tests) and ML tests (multivariate LR and stochastic gradient boosting (SGB)) for data processing and analysis. The models’ accuracy was assessed by three quality metrics: area under the ROC-curve (AUC), sensitivity, and specificity. The cross-validation procedure was performed at least 1000 times on randomly selected data.Results. The processing and analysis of preoperative patient status indicators using ML methods allowed to identify 10 predictors that were linearly and nonlinearly related to the development of POAF. The most significant predictors were the anteroposterior dimension of the left atrium, tricuspid valve insufficiency, ejection fraction <40%, duration of the P–R interval, and chronic heart failure of functional class III–IV. The accuracy of the best predictive multifactorial model of LR was 0.61 in AUC, 0.49 in specificity, and 0.72 in sensitivity. The values of similar quality metrics for the best model based on SGB were 0.64, 0.6, and 0.68, respectively.Conclusion. The use of SGB made it possible to verify the nonlinearly related predictors of POAF. The prospects for further research on this problem require the use of modern medical care methods that allow taking into account the individual characteristics of patients when developing predictive models.
Machine learning (ML) are the central tool of artificial intelligence, the use of which makes it possible to automate the processing and analysis of large data, reveal hidden or non-obvious patterns and learn a new knowledge. The review presents an analysis of literature on the use of ML for diagnosing and predicting the clinical course of coronary artery disease. We provided information on reference databases, the use of which allows to develop models and validate them (European ST-T Database, Cleveland Heart Disease database, Multi-Ethnic Study of Atherosclerosis, etc.). The advantages and disadvantages of individual ML methods (logistic regression, support vector machines, decision trees, naive Bayesian classifier, k-nearest neighbors) for the development of diagnostic and predictive algorithms are shown. The most promising ML methods include deep learning, which is implemented using multilayer artificial neural networks. It is assumed that the improvement of ML-based models and their introduction into clinical practice will help support medical decision-making, increase the effectiveness of treatment and optimize health care costs.
Aim. To develop an algorithm for selecting predictors and prognosis of atrial fibrillation (AF) in patients with coronary artery disease (CAD) after coronary artery bypass grafting (CABG).Material and methods. This retrospective study included 886 case histories of patients with CAD aged 35 to 81 years (median age, 63 years; 95% confidence interval [63; 64]), who underwent isolated CABG under cardiopulmonary bypass. Eighty-five patients with prior AF were excluded from the study. Two groups of persons were identified, the first of which consisted of 153 (19,1%) patients with newly recorded AF episodes, the second — 648 (80,9%) patients without cardiac arrhythmias. Preoperative clinical and functional status was assessed using 100 factors. Chi-squared, Fisher, and Mann-Whitney tests, as well as univariate logistic regression (LR) were used for data processing and analysis. Multivariate LR and artificial neural networks (ANN) were used to develop predictive models. The boundaries of significant ranges of potential predictors were determined by stepwise assessment of the odds ratio and p-value. The model accuracy was assessed using 4 metrics: area under the ROC-curve (AUC), sensitivity, specificity, and accuracy.Results. A comprehensive analysis of preoperative status of patients made it possible to identify 11 factors with the highest predictive potential, linearly and nonlinearly associated with postoperative AF (PAF). These included age (55-74 years for men and 60-78 years for women), anteroposterior and superior-inferior left atrial dimensions, transverse and longitudinal right atrial dimensions, tricuspid valve regurgitation, left ventricular end systolic dimension >49 mm, RR length of 1000-1100 ms, PQ length of 170-210 ms, QRS length of 50-80 ms, QT >420 ms for men and >440 ms for women, and heart failure with ejection fraction of 4560%. The metrics of the best predictive ANN model were as follows: AUC — 0,75, specificity — 0,73, sensitivity — 0,74, and accuracy — 0,73. These values in best model based on multivariate LR were lower (0,75; 0,7; 0,68 and 0,7, respectively).Conclusion. The developed algorithm for selecting predictors made it possible to verify significant predictive ranges and weight coefficients characterizing their influence on PAF development. The predictive model based on ANN has a higher accuracy than multivariate HR.
The review presents an analysis of the scientific literature on the assessment of the predictive value of hemodynamic parameters for predicting the immediate and long-term results of coronary artery bypass grafting (CABG). Modern options for hemodynamic and volumetric monitoring are considered, including transesophageal echocardiography, prepulmonary, transpulmonary thermodilution, as well as other methods based on estimation of pulse wave transit time. The information content of individual hemodynamic parameters is discussed to optimize the early diagnosis, prevention and intensive care of cardiovascular events associated with CABG. The scientific literature on stratification of the risks of postoperative complications and mortality based on the analysis of the predictive value of hemodynamic parameters is generalized. Variants of the integrated application of hemodynamic monitoring methods and artificial intelligence technologies for the development of automated systems for predicting the near and long-term results of CABG are analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.