The explicit history of the "hidden variables" problem is well-known and established. The main events of its chronology are traced. An implicit context of that history is suggested. It links the problem with the "conservation of energy conservation" in quantum mechanics. Bohr, Kramers, and Slaters (1924) admitted its violation being due to the "fourth Heisenberg uncertainty", that of energy in relation to time. Wolfgang Pauli rejected the conjecture and even forecast the existence of a new and unknown then elementary particle, neutrino, on the ground of energy conservation in quantum mechanics, afterwards confirmed experimentally. Bohr recognized his defeat and Pauli's truth: the paradigm of elementary particles (furthermore underlying the Standard model) dominates nowadays. However, the reason of energy conservation in quantum mechanics is quite different from that in classical mechanics (the Lie group of all translations in time). Even more, if the reason was the latter, Bohr, Cramers, and Slatters's argument would be valid. The link between the "conservation of energy conservation" and the problem of hidden variables is the following: the former is equivalent to their absence. The same can be verified historically by the unification of Heisenberg's matrix mechanics and Schrödinger's wave mechanics in the contemporary quantum mechanics by means of the separable complex Hilbert space. The Heisenberg version relies on the vector interpretation of Hilbert space, and the Schrödinger one, on the wave-function interpretation. However the both are equivalent to each other only under the additional condition that a certain well-ordering is equivalent to the corresponding ordinal number (as in Neumann's definition of "ordinal number"). The same condition interpreted in the proper terms of quantum mechanics means its "unitarity", therefore the "conservation of energy conservation". In other words, the "conservation of energy conservation" is postulated in the foundations of quantum mechanics by means of the concept of the separable complex Hilbert space, which furthermore is equivalent to postulating the absence of hidden variables in quantum mechanics (directly deducible from the properties of that Hilbert space). Further, the lesson of that unification (of Heisenberg's approach and Schrödinger's version) can be directly interpreted in terms of the unification of general relativity and quantum mechanics in the cherished "quantum gravity" as well as a "manual" of how one can do this considering them as isomorphic to each other in a new mathematical structure corresponding to quantum information. Even more, the condition of the unification is analogical to that in the historical precedent of the unifying mathematical structure (namely the separable complex Hilbert space of quantum mechanics) and consists in the class of equivalence of any smooth deformations of the pseudo-Riemannian space of general relativity: each element of that class is a wave function and vice versa as well. Thus, quantum mechanics can be considered ...
The paper introduces and utilizes a few new concepts: "nonstandard Peano arithmetic", "complementary Peano arithmetic", "Hilbert arithmetic". They identify the foundations of both mathematics and physics demonstrating the equivalence of the newly introduced Hilbert arithmetic and the separable complex Hilbert space of quantum mechanics in turn underlying physics and all the world. That new both mathematical and physical ground can be recognized as information complemented and generalized by quantum information. A few fundamental mathematical problems of the present such as Fermat's last theorem, four-color theorem as well as its new-formulated generalization as "four-letter theorem", Poincaré's conjecture, "P vs NP" are considered over again, from and within the newfounding conceptual reference frame of information, as illustrations. Simple or crucially simplifying solutions and proofs are demonstrated. The link between the consistent completeness of the system mathematics-physics on the ground of information and all the great mathematical problems of the present (rather than the enumerated ones) is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.