The problem of forming command control of the subhypersonic first stage of an aerospace system in climb is considered. Passive motion of spacecraft in conditions of maximum atmospheric density disturbance is analyzed. Achieving the prescribed value of the angle of climb is the terminal motion condition. Terminal height is a controlled value. An algorithm of terminal control for the formation of command value of aerodynamic lift coefficient is proposed. The Newton method with one or more iterations at the correction step is used in determining command control. The serviceability and efficiency of the algorithm compensating the influence of variations of atmospheric density on the preset terminal altitude condition of spacecraft motion are analyzed. The results of simulating spacecraft motion with terminal control for maximally rarefied and maximally dense atmosphere are discussed. Possible improvement of the terminal control algorithm is suggested.
The task of optimizing trans-atmospheric motion of a flight vehicle in order to maximize its final velocity with prescribed finite values of the height and flight path angle is considered. The angle of attack acts as control in passive motion of a vehicle. Previously, the sequential linearization method was used to solve this optimization task. It is shown that at great altitudes the control programs are slightly different depending on the chosen initial approximation. Therefore, the aim of this work is to determine the optimum control program on the basis of a strict solution of the optimization task using the Pontryagins maximum principle. Solving the problem of optimizing trans-atmospheric motion of a flight vehicle is illustrated by passive climb of the sub-hypersonic vehicle MPV (the first stage of the aerospace system RASCAL designed in the USA). The coefficient of lift (angle of attack) increases in the greater part of the trajectory to provide the prescribed finite values of height and path inclination and then decreases to provide maximum final velocity. The correctness of the obtained solutions of the optimization task using the maximum principle is confirmed by the zero Hamiltonian value in the optimum trajectory. The results of vehicle motion simulation with optimal control and various initial conditions of motion and the vehicle mass are discussed. The results obtained show that the solutions of the optimization task under consideration using the maximum principle and the sequential linearization principle are in close agreement.
The paper deals with the task of optimizing a space vehicles trans-atmospheric motion in order to maximize its terminal velocity at prescribed finite values of the height and trajectory inclination angle. The angle of attack acts as control in a vehicles passive motion. To determine the optimal program of the control of angle of attack, the method of sequential linearization is used. Solving the problem of optimizing the vehicles trans-atmospheric motion is illustrated by passive climb of a sub-hypersonic vehicle MPV (the first stage of the aerospace system RASCAL designed in the USA). The results of simulating the vehicle motion with optimal control and various initial conditions of the vehicles motion and mass are discussed.
The task of optimizing the space vehicle combined orbital plane change maneuver with the aim of maximizing its final mass is considered in the paper. Burst of power is used for the vehicles exit from the initial low earth orbit and subsequent re-entry. Starting from atmospheric entry till the end of the orbital plane change with the entry in the final orbit the angle of attack, the air-path bank angle and the fuel-flow rate are used as controls. Limitations for the angle of attack, fuel-flow rate, adiabatic recovery temperature, longitudinal and vertical load factor are introduced. The successive linearization method is used to determine the optimal control programs. Solving the optimization task is exemplified by a hypothetical space vehicle. The results of modeling space vehicle motion are presented. The changes in the determined aerodynamic (angle of attack and air-path bank angle) and motion (fuel-flow rate) controls with increasing the angle of orbital plane change are discussed with and without account of the key limitation on the modes of motion maximum adiabatic recovery heating temperature.
1Самарский государственный аэрокосмический университет имени академика С. П. Королёва (национальный исследовательский университет) 2 Государственный научно-производственный ракетно-космический центр «ЦСКБ-Прогресс», г. СамараПриведены результаты верификации предложенного критерия оценки адекватности управляемой искусственной силы тяжести (ИСТ) и естественной силы тяжести (ЕСТ). Показана правомерность ис-пользования критерия при решении задач сходства / различий ИСТ и ЕСТ. Мехатронная система «человек -центрифуга», модель, критерий, верификация, теоретико-множественный подход.Статья представляет расширенное изложение доклада, сделанного в рамках Международного научно-технического форума, посвящённого 100-летию ОАО «Кузнецов» и 70-летию СГАУ [1].Введение. Среди многочисленных технических средств медицинского назна-чения особое положение занимают цен-трифуги короткого радиуса действия (ЦКР). Они предназначаются для созда-ния управляемой искусственной силы тя-жести ( ИСТ) в форме локального поля центробежных ускорений, в которое по-мещается человек ( испытатель, космо-навт, пилот, больной с разнообразными нозологическими формами). Как резуль-тат формируется сложная мехатронная система класса «человек -ЦКР». Подоб-ные системы в одно-и многоместном ис-полнении получили распространение в США, ФРГ, Франции, России и Японии. На рис. 1 в качестве типового примера представлена фотография одноместной ЦКР, установленной в Самарском госу-дарственном медицинском университете (СамГМУ), на которой выполняются се-ансы гравитационной терапии ( ГТ) [2]. Под ГТ понимаются физиотерапевтиче-ские процедуры, представляющие собой разновидность восстановительной меди-цины и заключающиеся в воздействии на организм человека управляемым центро-бежным ускорением, создаваемым ЦКР в направлении «голова -ноги». Рис. 1. ЦКР для проведения сеансов ГТ:1 -ротор -горизонтальный стол, 2 -кабина пациента, 3 -пациент в позе «лёжа», 4 -ось вращения
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.