For noninvasive diagnostics of hypoxia, we propose the nonenzymatic sensor based on screen-printed structures with the working surface modified in course of electropolymerization of 3-aminophenylboronic acid (3-APBA) with imprinting of lactate. Impedimetric sensor allows lactate detection in the range from 3 mM to 100 mM with the detection limit of 1.5 mM; response time is 2-3 min. Sensor sensitivity remains unchanged within 6 months of storage unpacked in dry state at a room temperature, which is unachievable for enzyme based devices. Analysis of human sweat with poly(3-APBA) based sensor is possible due to (i) much higher lactate content compared to other polyols and (ii) high sensor selectivity (K < 3 × 10). Successful detection of lactate in human sweat by means of the poly(3-APBA) based sensor has been confirmed using the highly specific reference method based on lactate oxidase enzyme (correlation coefficient r > 0.9). The attractive performance characteristics of poly(3-APBA) based enzyme-free sensors justify their future use for noninvasive clinical analysis and sports medicine.
We report herein the design, synthesis, and biological investigation of a series of novel Pt(IV) prodrugs with non-steroidal anti-inflammatory drugs naproxen, diclofenac, and flurbiprofen, as well as these with stearic acid in the axial position. Six Pt(IV) prodrugs 5–10 were designed, which showed superior antiproliferative activity compared to cisplatin as well as an ability to overcome tumor cell line resistance to cisplatin. By tuning the drug lipophilicity via variation of the axial ligands, the most potent Pt(IV) prodrug 7 was obtained, with an enhanced cellular accumulation of up to 153-fold that of cisplatin and nanomolar cytotoxicity both in 2D and 3D cell cultures. Pt2+ species were detected at different depths of MCF-7 spheroids after incubation with Pt(IV) prodrugs using a Pt-coated carbon nanoelectrode. Cisplatin accumulation in vivo in the murine mammary EMT6 tumor tissue of BALB/c mice after Pt(IV) prodrug injection was proved electrochemically as well. The drug tolerance study on BALB/c mice showed good tolerance of 7 in doses up to 8 mg/kg.
We report on the novel reagentless and label-free detection principle based on electroactive (conducting) polymers considering sensors for polyols, particularly, saccharides and hydroxy acids. Unlike the majority of impedimetric and conductometric (bio)sensors, which specific and unspecific signals are directed in the same way (resistance increase), making doubtful their real applications, the response of the reported system results in resistance decrease, which is directed oppositely to the background. The mechanism of the resistance decrease is the polyaniline self-doping, i.e., as an alternative to proton doping, an appearance of the negatively charged aromatic ring substituents in polymer chain. Negative charge "freezing" at the boron atom is indeed a result of complex formation with di- and polyols, specific binding. Changes in Raman spectra of boronate-substituted polyaniline after addition of glucose are similar to those caused by proton doping of the polymer. Thermodynamic data on interaction of the electropolymerized 3-aminophenylboronic acid with saccharides and hydroxy acids also confirm that the observed resistance decrease is due to polymer interaction with polyols. The first reported conductivity increase as a specific signal opens new horizons for reagentless affinity sensors, allowing the discrimination of specific affinity bindings from nonspecific interactions.
A series of 73 ligands and 73 of their Cu+2 and Cu+1 copper complexes with different geometries, oxidation states of the metal, and redox activities were synthesized and characterized. The aim of the study was to establish the structure–activity relationship within a series of analogues with different substituents at the N(3) position, which govern the redox potentials of the Cu+2/Cu+1 redox couples, ROS generation ability, and intracellular accumulation. Possible cytotoxicity mechanisms, such as DNA damage, DNA intercalation, telomerase inhibition, and apoptosis induction, have been investigated. ROS formation in MCF-7 cells and three-dimensional (3D) spheroids was proven using the Pt-nanoelectrode. Drug accumulation and ROS formation at 40–60 μm spheroid depths were found to be the key factors for the drug efficacy in the 3D tumor model, governed by the Cu+2/Cu+1 redox potential. A nontoxic in vivo single-dose evaluation for two binuclear mixed-valence Cu+1/Cu+2 redox-active coordination compounds, 72k and 61k, was conducted.
Controlled photoreduction of Pt(IV) prodrugs is a challenging task due to the possibility of targeted light-controlled activation of anticancer agents without affecting healthy tissues. Also, a conjugation of photosensitizers and clinically used platinum drugs into one Pt(IV) prodrug allows combining photodynamic therapy and chemotherapy approaches into one molecule. Herein, we designed the cisplatin-based Pt(IV) prodrug Riboplatin with tetraacetylriboflavin in the axial position. A novel Pt(IV) prodrug is able to act both as a photodynamic therapy (PDT) agent through the conversion of ground-state 3O2 to excited-state 1O2 and as an agent of photoactivated chemotherapy (PACT) through releasing of cisplatin under gentle blue light irradiation, without the requirement of a reducing agent. The light-induced behavior of Riboplatin was investigated using an electrochemical sensor in MCF-7 tumor spheroids. Photocontrolled cisplatin release and ROS generation were detected electrochemically in real time. This appears to be the first confirmation of simultaneous photoactivated release of anticancer drug cisplatin and ROS from a dual-action Pt(IV) prodrug observed from the inside of living tumor spheroids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.