The symbiosis between vascular plants and mycorrhizal fungi is paramount for carbon and nutrient cycling in most of the world's ecosystems. Most vascular plant species are associated with mycorrhizal fungal partners, and the association is essential for the carbon and nutrition economies of both partners. However, despite its clear importance, data on this symbiosis are lacking: for most vascular plant species, mycorrhizal type is unknown. Very rarely is there data on the levels of mycorrhizal infection intensity in multiple habitats.We translated and digitized a huge data set on vascular plant mycorrhizal intensity throughout the former Soviet Union, previously available only as a hard copy appendix of the doctoral thesis of Ivan A. Selivanov published in Russian in 1976 and not accessible to the international research community. We updated the taxonomic plant nomenclature to the International Plant Name Index and adjusted mycorrhizal and ecological terminology according to the modern international literature.The database contains 7445 records on mycorrhizal infection type and intensity of 2970 plant species from 155 families, in 154 sites, situated across the former Soviet Union (mostly on the territory of the current Russia, Ukraine, and Kazakhstan), comprising together extensive geological, topographic, and climatic gradients. The data set includes percentage infection for each species-site combination for arbuscular, ericoid, arbutoid, endomycorrhizal, dark septate, orchid-and ecto-mycorrhizal fungi. Each record has a detailed description of geography. For many records, soils and host plant community are described. Most of the sites are natural; 10 sites are situated in botanical gardens. For 1291 species the intensity of mycorrhizal infection is quantified in multiple plant communities (2-57). The remaining species are described at single sites.Selivanov developed his own methods for quantifying mycorrhizal infection intensity. These methods are comparable, but not identical to, the methodology commonly used today. Based on our own sampling of 99 plant species collected in two distant sites (Caucasus [Russia] and Abisko [Sweden]), we provide a simple equation for data conversion between the two methods.The availability of this database will help to provide answers to important questions concerning biogeochemical cycling, climate change impacts, and co-evolution of plants and fungi.
By the method of data re-collection and re-assessment, we here test the completeness of distribution areas of the species and species aggregates of Rosa in Eastern Europe as mapped in volume 13 of Atlas Florae Europaeae (AFE), and discuss insights into the issues connected with the data. We found many new occurrences which are additions to the published maps: 1068 records of species and 570 records of species aggregates. The new occurrences are listed with references to the sources, and the updated AFE maps are provided. The greatest increase by new native occurrences was revealed for the species that are widespread or taxonomically complicated, and by new alien occurrences for the species that currently expand their secondary distribution areas. The mapping work published in 2004 is considered good, with minor omissions caused by possible oversights and incomplete sampling. The majority of new additions originated in the period after the original data collection. Nearly the same amount of new data originated from larger and smaller herbarium collections, underlining the value of small collections for chorological studies. We found that only ca 20% of new records based on herbarium specimens have been published, thus highlighting the need for data papers for publication of distributional data. The greatest increase by new records based on herbarium specimens was found for insufficiently studied territories (Belarus, central, northern and eastern parts of Russia), whereas the same level of increase for the territories with reasonably good coverage (Latvia) was achieved by observations. We
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.